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ABSTRACT

Residential energy applications have become an important
domain of cyber-physical systems. These applications provide
significant opportunities for end-users to reduce their electricity
costs and for the utilities to balance their supply and demand in
the most effective way. One of the most important applications
is predicting the total energy usage of a house. However, an ac-
curate time-series prediction may require significant amount of
data, e.g. per appliance energy consumption values, that need
costly installations, data storage units, and computation and com-
munication devices. In this paper, we propose a framework that
uses a forward-selection-based input filtering mechanism for res-
idential prediction applications. Our framework can effectively
reduce the amount of data required for residential energy predic-
tion without sacrificing prediction performance. We demonstrate
that 94% of the houses can leverage our method, which leads to
up to 80% reduction in required data, greatly reducing the system
cost and overhead.

INTRODUCTION

Residential smart grid applications have recently gained a
lot of attention due to advancements in cyber-physical systems
(CPS) (sensor technology, smart meters, smart appliances, etc.)
and the Internet of Things (IoT) (advanced networking capabil-
ities). One important target of these applications is to achieve
efficient energy consumption. Efficient energy consumption has
recently become one of the major global concerns, due to the
growing energy demands and lack of natural resources to meet

them [1] [2]. To support this vision in residential power grids,
utilities are replacing the electromechanical meters with smart
meters [2]. ”In 2014, U.S. electric utilities had about 58.5 mil-
lion advanced (smart) metering infrastructure (AMI) installa-
tions. About 88% were residential customer installations” [3].
Residential energy management applications target to con-
trol the individual loads in a house (such as washer, dishwasher,
dryer, heating, ventilation, lighting and air conditioning (HVAC)
units, etc.) to reduce the energy consumption or the electricity
cost. Different than other domains (such as commercial or in-
dustrial buildings) controlling residential loads require explicit
human participation. Residential applications rely on various
sensors and smart meter data to make sure that the control deci-
sions are aligned with the requirements of household members.
Although the IoT provides significant leverage to provide data, it
also leads to an important problem: dramatically increased num-
ber of available variables [4]. While the applications may make
use of all these available inputs provided by various sources, they
cannot rely on them due to network congestion, device failures,
inadequate infrastructure, etc. in order to maintain the operation.
Venkatesh et al. [5] provide a modular approach for context
aware [oT applications to address the increased input problem.
They identified that the current approaches are very inefficient
and introduce significant redundancy. They also pointed out how
the complexity of such applications increases with the increase
in the number of inputs. This introduces many scalability issues
while dealing with a large amount of sensor data in a heteroge-
neous application environment. Most of the energy management
applications are designed to make fast real time decisions within
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the network (interconnect of smart devices). These systems are
generally based on light energy efficient hardware (compute con-
strained mobile and embedded CPU’s) and often times running
multiple applications in parallel. This makes the amount of in-
puts required for training such systems practically challenging.
Thus, we identify the inherent need for reducing the number of
inputs for residential applications. This reduction in the number
of inputs will reduce the computation required by the application
and hence improves the its efficiency.

In our work, we mainly consider residential customer instal-
lations, with smart meters and smart appliances. The goal of
smart meter deployment in residential buildings is to 1) monitor
the real-time energy consumption in a house and 2) manage the
controllable loads (such as smart appliances, HVAC, lighting)
to increase the efficiency of the system. The power consump-
tion data for the appliances represents the usage (of appliances)
patterns/habits of a user which can be used to characterize total
energy consumption at certain periods in time. It is also impor-
tant to note that individual appliance power consumption values
may have different relationship with the total power consump-
tion of the house e.g:if a microwave oven is turned on at a par-
ticular time it might represent that the resident will potentially
use other appliances soon to increase the total power consump-
tion. But in case of a light, if a light bulb is ’on’ that may not
represent increased total energy consumption in the house. We
use TESLA [6] method that to predict time series data based on
multiple inputs. This algorithm produces highly accurate and ef-
ficient predictions with proper input.

Finally, we present a framework to reduce the number of
inputs required for the residential energy prediction application.
Our framework is based on ordinary least square regression and
forward selection to reduce the number of inputs for a given ap-
plication. Our method identifies the multicollinearity within the
input data set and selects the inputs that provide the most use-
ful information for the application. In this setup, individual ap-
pliance power consumption values are used as inputs to predic-
tion. We first determine the correlation between all the inputs
and the output (total power consumption). From this correlation
information, we determine the best input data, that would not de-
crease the quality of prediction below a certain threshold. Our
framework also makes sure that it chooses the set of best possi-
ble unique inputs that results in prediction error below a given
threshold. We test our framework on a publicly available data
set provided by Pecan Street Inc. [7], that includes disaggregated
energy consumption values for hundreds of houses.

Experimental results verify that up to 94% of the analyzed
houses can leverage our method, i.e. they can reduce the amount
of data required for prediction while meeting target error rates.
In the meantime, we achieve up to 80% data reduction. Finally,
using our detailed appliance selection analysis, we can define a
common set of appliances that can potentially be used for total
house energy consumption prediction across multiple houses.

RELATED WORK

Residential energy prediction has been an important re-
search topic for several years. Traditionally, it has been an
important problem mostly for the electricity providers, so that
they could balance the supply and the demand in the electri-
cal grid [8]. As a result, most of the residential energy model-
ing and estimations were performed in large-scale [9]. In addi-
tion, there were country- or region-specific (e.g. U.S. [10], Eu-
rope [11], China [12], etc.) and application-specific (e.g. climate
change [13], sustainability [14]) studies as well. With the re-
cent technological advancements (such as the Internet of Things,
etc.), modeling, analyzing and controlling the energy consump-
tion of a single house has become very important [15], creating
the Smart Home domain, which is a very good CPS example,
with physical devices, such as appliances, controlled by small
microcontrollers, forming the cyber part [16]. Thus, predicting
the energy consumption of a single house accurately, rather than
thousands of houses together, has become a necessity.

Energy prediction of a house requires time-series data anal-
ysis. Several research projects have proposed a variety of meth-
ods. These include using linear regression on historical data [17],
support vector regression [18], ARIMA [19], etc. All these
studies assume that the houses are already equipped with smart
meter infrastructure to collect data or rely on manual user sur-
veys [20]. Furthermore, other researchers argue that analyzing
the energy consumption at the appliance level (disaggregated
energy data) would produce more accurate results and help us
understand the patterns and trends in energy consumption bet-
ter [21], [22]. These studies can further use data dimensional-
ity reduction methods to mitigate the large data problem, such
as principal component analysis [23], or independent component
analysis [24]. Although these methods can reduce the amount of
data to be fed into prediction methods, they still require the full
set of initial data available to calculate the reduced set, i.e. they
do not completely eliminate the need for all the available data.

All of these methods require significant installation costs
(per appliance installation costs), as well as computation and
communication infrastructure to process the large amounts of
data to be generated by individual devices. Furthermore, al-
though smart meter deployment is very common, it is still not
as widespread as desired, and the data generated by those smart
meters are not easily accessible even by the household mem-
bers creating the data. This necessitates further deployment for
smart home applications that require residential energy predic-
tion. In this paper, we develop a framework, which can choose
the most relevant data required to predict the entire house en-
ergy consumption. We can achieve significant data reduction,
that translates into reduced installation and infrastructure cost.
Additionally, using this framework, we can identify common ap-
pliances that can be used across multiple houses, decreasing the
initial analysis overhead to be performed on individual houses.
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DATA REDUCTION FRAMEWORK

The main contribution of this paper is the input filtering
framework for the residential energy prediction. The main idea is
to determine and leverage the correlation between the input vari-
ables (individual appliance power consumption data) and the out-
put (overall energy consumption). We use Pecan Street database
[7] as our main data source mainly because 1) it has data for sev-
eral different houses and 2) it provides disaggregated data corre-
sponding to individual appliances.

In our current framework, we leverage TESLA (Taylor Ex-
panded Analog Forecasting Algorithm) [6], a statistical learning
model that can be fully generalized, as the prediction algorithm.
It provides efficient model generation: O(n%*), where n is the
number of inputs and « is the function order of the Taylor ex-
pansion. The generic function of this expansion is established as
follows:

Yi,Cixi (1"order)
):l'-':()):‘j:oc,'jx,'xj (2"order), etc.

where C;; represents coefficients learned with observations,
and xo = 1 (the constant factor). The resulting equation is Ax = B,
where A is the matrix of input observations; x is the vector of
coefficients, and B is the vector of output observations, each en-
try correlating with the corresponding row of A, and solved by
least squares estimation. Higher function orders are able to rep-
resent more accurate correlations between input variables, but
they require exponentially more training samples with respect to
o for example, 1¥-order (linear) functions only require n sam-
ples, whereas 2"“-order functions require n*> samples.

We use TESLA in our study for its versatility and ease of
model generation, but other prediction algorithms can be used
as well. TESLA assumes that there is a relation between inputs
(individual appliance power consumption values) and the output
(total power consumption of the house), but this relation is not
known and it does not make any assumptions on this relation. It
tries to approximate this relation by its Taylor expansion. Next,
we are going to show how we are reducing the number of in-
puts required to predict the output value by using the correlation
between inputs and the output value.

Correlation Calculation

To quantify the correlation of inputs to the output values, we
use the VIF (variance inflation factor) coefficient. It provides
the measure of increase in variance of the regression predictor
variable due to collinearity. To determine this we use the ordinary
least squares (OLS) linear regression model to predict a certain
variable using others.

VIF =

Here, R? is calculated from the OLS model [25]. Its value

is a fraction between 0.0 and 1.0. A value of 0.0 denotes that
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FIGURE 1: Input filtering algorithm given a set of input variables
(appliance power consumption) and ground truth (total power
consumption). Red parts show the data preprocessing and the
blue parts show the iterative decision making processes.

there is no linear relationship between X and Y and a value of
1.0 denotes that these two variables are perfectly correlated. We
use the VIF value to determine the collinearity of the inputs. For
example, VIF = 1 indicates no correlation. VIF values higher
than 10 show very high correlation. Generally, VIF values higher
than 5 depict strong correlation, as shown in [26] and [25].

Forward Selection

After determining the correlation among the input variables,
we select the best input(s) (the input with highest correlation with
the output- total energy consumption, using the calculated VIF
values) for energy prediction. If the prediction error after select-
ing this input is within an acceptable threshold, we do not need to
perform forward selection. If the error has not yet converged to
a desired value (or range), we perform forward selection to add
another input to our selected set (to reduce the overall error when
estimating the output). The next input to be added to the selected
set, the goal is to find the variable that can add the largest possible
missing variance (in the predictor). We use a forward selection
based scheme iteratively determine this input variable. The next
subsection explains this iterative process in more detail.

Iterative Framework

The main framework using correlation calculation and for-
ward selection is shown as a flow chart in Figure 1. We assume
that our system is provided with a set of input variables (appli-
ance energy consumption data) and some ground truth output (to-
tal energy consumption data). Given this ’input set’ (list of all in-
put variables available), we start by determining the correlation
factor R2. We then select the input with the highest correlation
value (R?) and pass this into a set which we label as ’selected
set’. We refer to the remaining set of inputs as the ’test set’.

The ’test_set’ and the ’selected_set’ are then passed to the
forward selection method. The forward selection method takes
all the input variables present in the ’selected_set’ and adds one
input from the ’test_set’ at a time. We label this temporary set as
temp_set’ and the input taken from the ’test_set’ as ’test_input’.
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Data: Individual appliance power data = all_input

Result: Selected appliances subset = selected _input

set threshold_value;

for each appliance € all_input do
calculate VIF value;

end

current_error = oo,

selected_input = @,

test_set = all_input;

while current _error > threshold _value do
test_input = argmax ,, inc. VIF values;
selected _input = selected _input + test_input;
test_set = test_set - test_input;
current _error = prediction error with selected _input;

end

return selected _input;

Algorithm 1: Main iterative framework of our method

This ’test_input’ is the one that has the highest VIF value in the
“test_set’. The method then determines the prediction error us-
ing the "temp_set’ to obtain the output (total power consumption
of the house). We calculate the error as 'Normalized Mean Ab-
solute Error’ for this prediction and save the results to compare
with the threshold value. This method finds the most relevant
input variable, with whose addition to the ’selected_set’, we can
get high reduction in the prediction error (here prediction error
is calculated with respect to the ’selected_set’). Now both ’test’
and ’selected’ sets are returned to the main framework. Here, we
determine if the NMAE is higher than some specified threshold
(we use different error threshold values - see the Results sec-
tion). If the error is higher than the threshold, the ’selected’ and
the “test sets are again passed to the forward selection method for
the selection of the next input. In summary, if the error is higher
than some required or acceptable threshold, our framework keeps
adding more input variables, so that the new input would provide
some additional information about the output value to reduce the
prediction error. Algorithm 1 outlines the steps of our method.

EXPERIMENTAL RESULTS

This section first introduces the experimental setup to eval-
uate our input filtering mechanism and then presents the results.
The prediction algorithm we use, i.e. TESLA, takes disaggre-
gated residential power consumption data and produces total
power consumption estimations. The prediction accuracy gets
better if there are more data available at per appliance level. We
use Pecan Street [7] database to obtain this disaggregated data
(per appliance or plug energy consumption values). The data
set consists of power data, along with their corresponding times-
tamps, for various set of appliances found in hundreds of houses.

The data contains raw power consumption values for 15-minute
time intervals. The number of samples vary from house to house,
but generally there are more than 80,000 per appliance.

However, not all houses have power consumption data for a
variety of appliances, which severely affect the baseline predic-
tion performance (where we use all the available appliance data
for prediction for the best performance). Thus, we first make an
initial analysis on this database to identify a number of houses
that have data for as many individual appliances as possible, so
that TESLA can give accurate results. We collect individual ap-
pliance/plug energy consumption data for the year 2014, and then
apply TESLA for various training and test durations (we use 1-7
days for training interval and 1-8 weeks for testing). After this
analysis, we identify two sets of houses: 1) Ser10: The best pre-
diction error is less than 10%. The number of houses in this
category is 48. 2) Set20: The best prediction error is between
10% and 20%. The number of houses in this category is 185.
Together, the number of houses we analyze is 233. Finally, we
set the error threshold as 10%, for Ser10 and 20% for Set20 for
the iterative forward selection algorithm. This way, our goal is to
get as close as possible to the best prediction performance using
the least amount of appliance data possible.

We report our results in three categories: 1) We compare
the error performance of the best prediction vs. our forward
selection-based method that selects up to 3 appliances. 2) We
analyze the amount of possible data reduction using our forward
selection-based method. This is important in terms of reducing
the installation overhead, data storage overhead and communica-
tion overhead. 3) We investigate the selected appliances across
the houses. Our goal is to identify if there are any common ap-
pliances that are selected by the majority of the houses.

Error Performance of Our Method

This section compares the error performance of the best pre-
diction vs. our forward-selection-based prediction for the houses
in Set10 and Set20. Figure 2 outlines the main results, where Fig-
ure 2a shows the results for Set10 and Figure 2b shows them for
Set20 (note that in Figure 2b, we show only a subset of all avail-
able houses - 50 out of 185 - for clarity of the figure). In both
figures, y-axis represents the error percentage values and each
vertical line crossing the x-axis corresponds to a house. For both
graphs, each 4-tuple (shapes: blue diamond, red square, green
triangle, and purple cross) placed on a vertical line represents a
house. Below is the explanation of the each value in a 4-tuple:

1. Blue diamond: Best prediction error value that uses all avail-
able appliance data. As a result all the blue diamond points
are below 10% in Figure 2a and in between 10% and 20% in
Figure 2b.

2. Red square: The prediction error value where forward-
selection chooses 1 appliance
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FIGURE 2: Error performance with different numbers of selected appliances
Set10 — 48 houses Set20 — 185 houses
1 appl | 2 appl | 3 appl | Total 1 appl | 2 appl | 3 appl | Total
# houses that can achieve 10% error 6 7 8 21 # houses that can achieve 20% error 72 30 27 129
Percentage 12.50 | 14.58 | 16.67 | 43.75 Percentage 39.13 | 16.30 | 14.67 | 70.11
# houses that can achieve 15% error 22 9 6 37 ||| # houses that can achieve 25% error | 117 31 14 162
Percentage 45.83 | 18.75 | 12.50 | 77.08 Percentage 63.59 | 16.85 | 7.61 | 88.04
# houses that can achieve 20% error 31 7 5 43 # houses that can achieve 30% error 143 21 9 173
Percentage 64.58 | 14.58 | 10.42 | 89.58 Percentage 77.72 | 11.41 | 4.89 | 94.02

TABLE 1: Number of houses that can reach different target error rates in Sez 10 and Set20

3. Green triangle: The prediction error value where forward-
selection chooses 2 appliances
Purple cross: The prediction error value where forward-
selection chooses 3 appliances

The figure shows that our forward-selection method can
choose the most relevant appliance data for predicting the to-
tal energy consumption of the individual houses in several cases.
For example, if we choose the target error rate as 10% for the
houses in Set 10, by choosing up to 3 appliances with our method,
45% of the houses can achieve error less than 10%. We also an-
alyzed different target error rates. For the houses in Sez10, if we
choose target error rate as 15%, by choosing 3 appliances, 77%
of the houses can achieve the target error rate. Similarly, if we
set the target as 20%, 90% of the houses can achieve the target
error rate. Table 1 outlines these results for houses in Ser10 and
Set20. Note that, the houses using 1 appliance vs. 2 appliances
vs. 3 appliances are mutually exclusive, i.e. if a house can meet
the target error rate with 1 appliance, that house is not considered
further for 2 or 3 appliances. In the table, we can see that more
houses achieve their target error values. In Set20, the percentage
of houses that can reach the target error rate goes up to 94%.

We can say that our forward-selection-based method is ef-

fective in terms of finding the most relevant appliance data to
predict the overall house energy consumption.

Data Reduction using Our Method

In this section, we demonstrate how much data reduction
is possible using our method. Data reduction is important for
cyber-physical system applications because more data requires
1) more devices installed to collect that data - increased device
cost, 2) more data storage to store the data - increased device
cost, 3) more complex prediction and machine learning methods
- increased computation cost, and 4) more communication band-
width to send the data to computation points - increased commu-
nication cost. Thus, our method targets to reduce the amount of
data without sacrificing too much of the prediction performance.

Figure 3 demonstrates the main results of this section, where
Figure 3a shows the results for Ser10 and Figure 3b shows them
for Set20 (note that in Figure 3b, we show only a subset of all
available houses - 50 out of 185 - for clarity of the figure). In both
figures, y-axis represents the the number of appliances and each
vertical line crossing the x-axis corresponds to a house. For both
graphs, each 4-tuple (shapes: blue diamond, red square, green
triangle, and purple cross) placed on a vertical line represents a
house. Below is the explanation of the each value in a 4-tuple:
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FIGURE 3: Number of appliances required for different error percentage targets

1. Blue diamond: Total number of appliances for which power
data is available in a particular house.

2. Red square: The number of appliances required for 10%
(Figure 3a) and 20% (Figure 3b) target error rate

3. Green triangle: The number of appliances required for 15%
(Figure 3a) and 25% (Figure 3b) target error rate

4. Purple cross: The number of appliances required for 20%
(Figure 3a) and 30% (Figure 3b) target error rate

A sample reading from the figures is as follows: The first
vertical line in Figure 3a illustrates that the respective house has
a total of 7 appliances for which time-series power consumption
data is available. If set the target error rate for this house as 10%-
15%-20%, our method identifies 3-1-1 appliances, respectively,
i.e. we can use these subsets of appliances to achieve the target
error rate, rather than using all possible appliances. Thus the
data required for prediction can be reduced by 57%, 86%, and
86% for 10%, 15%, and 20% target error rates, respectively. In
both figures if any data point is placed at 0 (zero) number of
appliances, it means that the respective target error rate is not
achievable for that house (i.e. the data reduction is 0%).

These figures also support the results shown in Table 1. For
example, for the houses in Ser10, 43 houses can reach the set
error target rates. Thus, in Figure 3a, we have 5 houses, where
all the data points of those houses (except the total appliance
numbers) are placed at 0. For most of the houses, we can see that
the number of available appliances range from 7 to 11, which
means that our forward-selection-based method can reduce this
number to 1-3 without sacrificing the prediction performance.

Table 2 summarizes the results of this study. We see that
66% data reduction on average is possible in the worst case (with
the lowest target error rate), and in the best case, 80% average
data reduction is possible (with a little increased target error rate).

Setl10 — data reduction percentage | Set20 — data reduction percentage
with 10% target error 66.66 with 20% target error 70.78
with 15% target error 76.78 with 25% target error 77.26
with 20% target error 79.87 with 30% target error 79.91

TABLE 2: Average data reduction percentage values for different
target error rates in Set 10 and Sez20

Selected Appliance Analysis

In this section, we analyze the selected appliances across
the houses in Ser10 and Ser20. For this analysis, we selected
up to 3 appliances for all the houses in Sef10 and Set20 using
our forward-selection-based method. Table 3 summarizes the re-
sults of this study, where Table 3a lists the selected appliances
for Set10 and Table 3b shows the selected appliances for Set20.
In both tables, the first column lists the list of appliances that are
selected by at least one house (note that we preserve the nam-
ing notation from Pecan Street database). The next six columns
show the number of houses (and their percentage to the total size
of the respective set) that select a specific appliance as the first,
second, and third choice. Finally, the last two columns show the
total number of houses (and their percentage to the total) that se-
lect a specific appliance as one of the first, second or third choice
(i.e. it is a summary column).

We see that in Table 3a, the three most selected appliances
are furnace, dryer, and refrigerator. Table 3b produces similar
results: dryer, furnace and refrigerator. This means that for the
majority of the houses furnace, dryer, and refrigerator power con-
sumption data are enough to predict the power consumption of
the entire house. This is because these appliances can also ex-
plain the usage of other appliances in the house, i.e. the usage of
other appliances shows high correlation with these selected ap-
pliances. In other words, if we want to select a common set of
appliances to instrument in a variety of houses, in order to pre-
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. Appliancel Appliance2 Appliance3 Sum per | Total . Appliancel Appliance2 Appliance3 Sum per | Total
Appliance COl'l)l"l)t % Cm'l)rl:t % Cm[l’rl:t % applial:lce % Appliance CO;I‘lt % COlll)l[I)t % CO;I‘lt % applial:lce %o
furnacel 19 39.58 6 12.50 4 8.70 29 60.42 furnacel 59 32.07 19 10.56 15 8.62 93 50.27
dryerl 7 14.58 12 25.00 6 13.04 25 52.08 dryerl 52 28.26 40 22.22 5 2.87 97 52.43
diningroom1 1 2.08 0 0.00 0 0.00 1 2.08 diningroom1 0 0.00 3 1.67 0 0.00 3 1.62
carl 5 10.42 3 6.25 0 0.00 8 16.67 carl 24 13.04 5 2.78 0 0.00 29 15.68
refrigerator] 6 12.50 4 8.33 5 10.87 15 31.25 refrigerator 5 2.72 18 10.00 38 21.84 61 32.97
ovenl 1 2.08 5 10.42 5 10.87 11 22.92 ovenl 13 7.07 19 10.56 16 9.20 48 25.95
dishwasherl 2 4.17 1 2.08 8 17.39 11 22.92 dishwasherl 6 3.26 14 7.78 27 15.52 47 25.41
poolpumpl 5 10.42 0 0.00 0 0.00 5 10.42 poolpumpl 10 5.43 2 1.11 0 0.00 12 6.49
clotheswasherl 1 2.08 3 6.25 7 15.22 11 22.92 clotheswasher1 3 1.63 16 8.89 27 15.52 46 24.86
livingroom1 1 2.08 7 14.58 1 2.17 9 18.75 livingroom1 5 2.72 17 9.44 18 10.34 40 21.62
microwavel 0 0.00 3 6.25 4 8.70 7 14.58 microwavel 1 0.54 20 11.11 19 10.92 40 21.62
bedroom1 0 0.00 4 8.33 4 8.70 8 16.67 bedroom1 3 1.63 4 2.22 7 4.02 14 7.57
bathroom1 0 0.00 0 0.00 2 4.35 2 4.17 bathroom1 3 1.63 3 1.67 2 1.15 8 432

(a) Set10 - 48 houses

(b) Set20 - 185 houses

TABLE 3: Selected appliances analysis for the houses in Set 10 and Set20

dict their entire house power consumption, these three appliances
(furnace, dryer, and refrigerator) constitute a common set.

CONCLUSION

Smart homes have recently become an important cyber-
physical system (CPS) domain by adding various sensor and
computational devices to traditional homes. These smart homes
leverage the advancements in technology (such as sensor tech-
nology, smart meters, smart appliances) and provide several ap-
plications to their users, such as automated residential energy
management, increased security, etc. From these applications,
residential energy management is particularly important due to
the distributed nature of the grid and the considerable portion of
residential domain in overall energy demand. It is important for
both users and the electricity providers to accurately predict the
individual energy consumption. The users require prediction to
manage their loads in a more cost and energy efficient way. The
electricity providers, on the other hand, need prediction values
to better balance the supply and demand in the electrical grid.
However, accurate prediction may require significant amount of
data. It might not always be possible to rely on the existence
of such data due to network congestion, device failures, inade-
quate infrastructure, etc. Furthermore, although the technology
has made it easier to connect even to the smallest device, there
are numerous houses that do not even have the necessary infras-
tructure to place smart meters. Thus, this application needs to
be implemented in a way that requires minimal data availabil-
ity. In this paper, we present a method to decrease the amount
of necessary data to perform accurate energy consumption pre-
diction. Our method finds the most relevant and useful subset
of data within the input domain. We model the inherent corre-
lation among user input variables and implement an approach
using least square regression and forward selection to select the
most relevant variables. One advantage of our method is that, we
do not require all the data within the input domain to be available

at the same time in order to apply filtering. To test our method,
we use a public database that has data for hundreds of residen-
tial homes. Our evaluation shows that our method can reduce the
number of variables required for the prediction application effec-
tively, where up to 94% of the houses can meet target error rates.
Furthermore, while doing so, we can reduce the required data by
80%. This data reduction can translate into significant reduction
in device costs, data storage costs, computation and communica-
tion costs. And finally, we show a comprehensive analysis about
the selected appliance data across the houses investigated. Using
these results, we can define a common appliance set that can be
used across the houses.
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