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ABSTRACT 

As brown energy costs grow, renewable energy becomes more 
widely used. Previous work focused on using immediately 
available green energy to supplement the non-renewable, or 
brown energy at the cost of canceling and rescheduling jobs 
whenever the green energy availability is too low [16]. In this 
paper we design an adaptive data center job scheduler which 
utilizes short term prediction of solar and wind energy production.  
This enables us to scale the number of jobs to the expected energy 
availability, thus reducing the number of cancelled jobs by 4x and 
improving green energy usage efficiency by 3x over just utilizing 
the immediately available green energy.  
 

1. INTRODUCTION 
Green energy sources promise to mitigate the issues surrounding 
non-renewable generation, but their output is very susceptible to 
environmental changes. This limits the use of green energy in 
time-sensitive applications. Prediction can reduce the uncertainty 
of the available resources, allowing end-users to scale demand 
with the predicted supply [17]. Data centers are a significant 
source of energy consumption with an estimated 2% global 
greenhouse gas emissions attributed to them [18]. However, the 
time-sensitive nature of their service-level workloads has 
precluded the use of green energy, as jobs might need to be 
stopped when the available green energy drops [16].  

Data centers also have longer-running batch jobs (on the order of 
tens of minutes [9]) whose performance is measured in terms of 
throughput and job completion times instead of latency guarantees 
(e.g. web crawling, index update in search engines, web log 
analysis [07]). A number of computing frameworks have been 
developed to simplify the process of those jobs.  Examples 
include MapReduce [25], Dryad [26], and Pregel [5].  The fault-
tolerant nature of these frameworks mitigates source instability, 
allowing execution of a subset of the tasks in a job in order to 
scale with the available energy, as well as allowing re-execution 
of cancelled tasks that have been stopped due to a sudden lack of 
input energy.  

Green energy prediction over short time intervals (tens of 
minutes) alleviates these issues by scaling the workload to the 
expected available green energy, resulting in better maintenance 
of forward progress and allowing more tasks/jobs to continue their 
execution even if instantaneous green energy supply drops below 
the necessary amount. The system offsets the remainder of the 
immediate need with brown energy with the assurance that over 
the prediction interval the average green energy will ultimately be 
available. This allows a more efficient use of the available energy; 
reducing the amount of wasted green energy and the number of 
tasks/jobs that must be re-executed; and ultimately, increasing the 
overall throughput of the data center.  

The contribution of this paper is to develop a new data center job 
scheduling methodology that effectively leverages green energy 
prediction. We simulate a data center of 200 Intel Nehalem 
servers using measured data obtained on a small test bed of 
Nehalem servers that ran a mix of services (Rubis [6]) and batch 
jobs (MapReduce[8]).  Our scheduler ensures that the required 
response time targets for services are met while maximizing the 
completion times and the number of MapReduce tasks run.  We 
use green power data from a solar installation in San Diego [15], 
and wind power from National Renewable Energy Laboratory 
(NREL) [14] as our sources of green energy. Our results show 
maximum increase of 3x in green energy usage efficiency, a 1.6x 
increase in the amount of work performed by green energy over 
brown energy, and a 7.7x reduction in the number of jobs 
terminated due to the lack of instantaneously available green 
energy. 

2. RELATED WORK 

2.1 Energy Prediction 
Solar energy prediction is typically obtained with estimated 
weighted moving average (EWMA) models, because of its 
relative consistency and periodic patterns [19]. As long as the 
weather conditions remain consistent within a period, the 
prediction is accurate, but becomes inaccurate, with mean error 
well over 20%, with frequent weather changes. Recent work 
utilizing small-scale solar generation uses a weather-conditioned 
moving average (WCMA), taking into account the mean value 
across days and a measured factor of solar conditions in the 
present day relative to previous days [20]. While this work 
provides only a single future interval of prediction, it specifically 
addresses inconsistent conditions, with a mean error of under 
10%.  

Wind energy prediction can be separated into two major areas: 
time-series analysis of power data; and wind speed prediction and 
conversion into power. Kusiak et al. [21] presents a comparison of 
several methodologies of time-series modeling of wind farms. The 
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boosting-tree algorithm with both wind speed and power data 
performs well in their analysis, while the integrated model, a time-
series analysis utilizing only wind speed measurements, performs 
poorly for calculating wind power, likely due to the cubic 
relationship between wind speed and power. Giebel et al. [22] 
focuses on the latter, describing a number of meteorological 
models including Numerical Weather Prediction (NWP), which 
forecasts atmospheric conditions over longer term. They use the 
resulting predictions to simulate the output of a wind farm 
providing accurate estimates for 3-6 hour time periods. However, 
this comes at the cost of needed a whole data center to calculate 
prediction. Sanchez et al. [24] suggest a statistical forecasting 
system that generates power curves (wind speed vs. wind power) 
for each turbine based on meteorological information and machine 
characteristics. They then utilize the power curves and available 
wind data for forecasting.   

2.2 Green Energy in Data Centers 
Green energy usage in a data center environment is a relatively 
new topic. Gmach et al. [2] augment a data center with PV and 
municipal solid waste based energy. However, since solid waste 
energy supply is constant over time, they do not address the 
problem of variability in renewable energy supply. Lee et al. [3] 
model an optimization problem which uses the market prices of 
brown and green energy to decide how much energy of each type 
should be bought in each interval. They do not make server level 
scheduling decisions based on the amount of green energy. 

Stewart and Shen [4] analyze the energy requirement distributions 
of different requests and how to integrate green energy to the 
system.  They state that the variable nature of green energy can be 
a problem, but do not propose solutions. Gmach et. al. [1] use 
wind and solar energy to cap the power usage of a data center 
environment. The paper addresses the problem of variability of 
green energy and overcomes this problem by adding extra energy 
storage.  Krioukov et al. [16] use renewable energy for execution 
of MapReduce type jobs. They schedule MapReduce tasks with 
available green energy, but terminate them when the scheduler 
realizes that there is not enough green energy in subsequent 
intervals. 

Our work, in contrast, uses prediction methods to estimate the 
amount of green energy in a given interval and utilizes that data to 
make decisions about scheduling policies of individual servers. 
We aim to increase the green energy usage efficiency by 
prediction as well as reduce the destructive impact of the variable 
nature of the green energy sources on batch job completion times. 
Additionally, unlike previous work, we include service jobs and 
batch jobs together in our model to obtain a more realistic system 
view, as data centers normally see both types of workloads. 

3. SOLAR AND WIND ENERGY 

PREDICTION 
The focus of current work on large-scale green energy prediction 
is on medium to long-range time horizons lasting from hours to 
days. As such, the techniques are highly complex, requiring 
intensive data acquisition and analysis from using SCADA units 
[19] for solar energy to entire data centers [22] for NWP wind 
prediction models. Our prediction interval needs to be only as 
long as the workloads we desire to schedule, which is on the order 
of tens of minutes (our predictor uses 30 min). We chose this 
interval based on run-time experiments on the scalable, fault-
tolerant Hadoop framework [8], which we use as our batch 

workload. Furthermore, as the response time constraints of 
services that run in data centers can be quite short (tens of ms), 
our job scheduler and predictor need to be fast.  As a result, we 
designed solar and wind energy prediction models of lower 
complexity and shorter time horizons. 

3.1 Solar Prediction Methodology 
We applied various time-series prediction algorithms described in 
the related work to the output data retrieved from a solar farm at 
the University of California, San Diego, [15]. While most solar 
prediction algorithms are accurate when weather conditions are 
stable, EWMA algorithms have 32.6% mean error in variable 
weather. The WCMA algorithm [20], when repurposed by us for 
larger solar installations (instead of the wireless sensor networks it 
was originally designed for), performed very well, with a mean 
error of 9.6% for 30 min prediction window even in artificially-
created worst-case scenarios. 

3.2 Wind Prediction Methodology 
We develop a novel, low-overhead predictor that utilizes readily 
available data that has been shown to strongly correlate with wind 
energy prediction [21]: wind speed and wind direction. Our 
algorithm produces weighted nearest-neighbor (NN) tables to 
generate wind power curves using available wind speed and 
direction data at each 30-minute interval. Weighted tables allow 
the algorithm to adapt to seasonal changes by weighting recent 
results highly, while the power curves offer flexibility, allowing 
the algorithm to be used with different wind farms. The 
appropriate power curve table gets updated using the current 
interval’s observed wind velocity, direction, and output power as 
follows: 

Pnew (v, d) = α*Pobs (v, d, t) + (1-α)*Pold (v, d)        (1) 

 

here Pnew(v,d) is the new power curve table entry for a given wind 
velocity v and direction d, Pold(v,d) is the existing value for the 
same velocity and direction, and Pobs(v,d,t) is the observed value 
at time t. While α can vary from 0 to 1, we found most consistent 
results with α=0.75, which weights the model more heavily 
towards currently observed data. Future interval prediction uses a 
table lookup based on the predicted wind velocity and direction: 

Ppred (v, d, t+k) = P (v(t+k), d(t+k))                  (2) 

The algorithm has been tested against a wind farm installation 
over a year’s worth of power output data provided by the NREL, 
and the meteorological data provided by the National Climatic 
Data Center (NCDC). The results show a mean error of 17.2% for 
a 30-minute prediction interval, equaling or outperforming the 
time-series models described in [21], at much lower 
computational cost. 

4. GREEN ENERGY SCHEDULING AND 

DATA CENTER MODELING 
Our goal in this work is to evaluate the benefit of green energy 
prediction for increasing the data center job throughput while not 
sacrificing service jobs’ response time constraints. To accomplish 
this we designed both predictive and instantaneous green energy 
based schedulers and compare them to the baseline of using only 
brown energy. The scheduler uses two separate job arrival queues 
as shown in Figure 1.  One queue is for web services that have 
response time requirements (e.g. 90th percentile should be less 
than 150ms), and the other for batch jobs which are more 



 

 

concerned about throughput and job completion time. When a 
web services client request arrives, the controller allocates a 
server that has the smallest number of batch jobs running on it in 
order to reduce the interference effects between these two types of 
workloads. Additionally, we put a limit to the number of clients a 
host can serve to distribute the web-requests evenly among 
servers. This limit is determined by using current number of 
clients and total number of host machines. For simplicity, we 
assume that each server has at minimum one web services request 
queue, and one or more batch jobs slots to execute. Web services 
start execution whenever there are available computing resources 
(CPU and memory) to ensure their response time requirements are 
met whenever possible. Therefore, we guarantee that the system 
provides enough brown energy to maintain these service requests.  
In this work we use Rubis as representative of web services [6]. 
Based on our measurements and [11] we model the interarrival 
time of Rubis requests generated by a client using a lognormal 
distribution.   

We use open source version of MapReduce, Hadoop [8], to 
represent batch jobs. Input data of any given job is split and 
processed by many map/reduce tasks distributed across a fixed 
number of map/reduce slots in a cluster as shown in Figure 1. If 
there are more tasks than the available slots, the tasks without 
slots are queued. If any task fails, the MapReduce scheduler starts 
a fresh copy the task. The arrival process of this type of jobs is 
modeled by a lognormal distribution, as demonstrated in [9]. The 
total number of servers given to a job depends on the energy 
availability & green energy scheduling algorithms.  At each time 
instance, power consumption of servers is estimated using a linear 
model based on CPU utilization as in [10]. The overall data center 
energy cost is calculated using aggregate server power scaled by 
the power utilization efficiency ratio (PUE) to account for the 
impact of other sources of inefficiencies (e.g. cooling costs). We 
use our data center test bed measured average PUE value of 1.26. 

Predictive green energy scheduler: Our green energy predictor 
uses a 30-min prediction interval, a duration that is longer than 
that of our run-time tests of MapReduce jobs to ensure enough 
energy is available to finish the tasks. The predictor provides the 
scheduler with an estimate of the next period’s average green 
energy availability at the beginning of each batch job allocation 
interval. It then computes the number of batch job slots that can 
be used for the given amount of energy in that interval. When 
computing the number of extra slots the scheduler uses the 
average power/slot information we got from our measurements 
(see next subsection). If this number is greater than the current 
number of available slots, the remaining extra slots are distributed 
to the active MapReduce cluster, so that they can run more tasks 
in parallel. However, if this number is smaller, then the scheduler 
deallocates some jobs. Jobs that run more concurrent tasks than 
their base requirement have their slots reduced first. The tasks 
running in deallocated slots are either immediately terminated or 
restarted with green energy later on (jobs using more than needed 
slots), or continue but use brown energy instead. This decision is 
made depending on the number of concurrent tasks in a job. The 
energy consumed to run the terminated jobs in the previous 
interval is wasted. In the results section, we quantify this cost of 
incorrect energy prediction by using the green energy usage 
efficiency metric.  The main benefit of a predictor is that the 
number of deallocated slots for batch jobs can be dramatically 
reduced, and the number of available slots increased. 

Instantaneous green energy scheduler: We compare the impact 
of green energy prediction to the instantaneous use of green 
energy presented in [16]. To simplify evaluation we use the same 
algorithm as predictive scheduler, but with a 1min scheduling 
interval which reflects the instantaneous case well. 

4.1 Model validation using experimental 

testbed 
We developed a discrete event-based simulation platform for 
scheduling a mix of service and batch jobs in a data center 
consisting of hundreds of servers.  This enables us to evaluate the 
impact of using a combination of brown and green energy at scale. 
To ensure accuracy of our estimates, the parameters for our event-
based simulator are obtained from measurements on Intel 
Nehalem [12] servers when running a mix of service (Rubis [6]) 
and batch workloads (MapReduce [7]) within Xen VMs. Rubis 
and MapReduce are run in separate VMs, with MapReduce run 
across 2 VMs, one utilizing 4 cores, and the other varying the 
number of cores occupied. Rubis is run with 9000 concurrent 
users. 

# cores MapReduce 1-4 5 6 7 8 

Rubis QoS 0.047 0.08 0.1 0.4 0.93 

MapReduce Perf. 100% 94% 88% 83% 81% 

 

Table 1: Measured interference of MapReduce and Rubis 

Table 1 shows the measurements we obtained by scheduling an 
increasing number of MapReduce tasks on the same machine with 
service requests. We report a measure of normalized response 
time as Quality of Service (QoS) ratio, which is calculated using 
90th percentile response time over the expected response time (for 
Rubis it is 150ms). We see that even in the worst case, where we 
allocate the maximum number of available cores to MapReduce 
jobs, normalized response time of Rubis, as measured by QoS 
ratio, is still less than 1. In addition, we see that the worst case 
performance impact on normalized MapReduce job completion 
times is maximum 20%. Mean measured service time of a single 
map or reduce task is around 10 minutes, though the maximum 
can be as high as 20 min, thus justifying our choice of 30min 
green energy prediction interval. 

Web Client Queue 

… 

Batch Jobs Queue 

Green Energy Supply Information 

Request Queues 

Servers   …   

                  Slots 

Scheduler Brown Energy Supply 

Figure 1: System architecture 

 



 

 

 Measured Simulated Error 

Avg. Power Consumption 246 W 251 W 3% 

Rubis QoS ratio 0.08 0.085 6% 

Avg. MapReduce Comp. Time 112 min 121 min 8% 

 

Table 2: Verification of simulation outputs 

Given the measurements presented above, in our simulations we 
use 150ms as the target Rubis response time with 12ms service 
times for 1000 to 5000 clients representing different times in a 
day, 2min mean arrival time of MapReduce jobs [9] with average 
execution time of 10 min.  To ensure that in our simulations we 
have at most 10% performance impact on MapReduce tasks, we 
use 5 slots per server. We compare simulation results using this 
setup to actual measurements on the Nehalem server. Table 2 
shows that the average error is well below 10% for all quantities 
of interest, with power estimates having only 3% average error, 
while performance for services has only 6% and MapReduce 
completion times are within 8%. 

5. RESULTS  
We use our discrete event-based simulation platform to schedule a 
mix of service (Rubis) and batch jobs (MapReduce) in typical data 
center container consisting of 200 Intel Nehalem servers. The 
overall duration of simulation is 4.5 days. Simulations are 
repeated until we obtain a statistically stable average. 

Each server has a single web service queue that servers multiple 
clients. Incoming client requests are distributed over the servers 
evenly. The client arrival distribution is assumed to be exponential 
as in [23], while client requests are generated using a lognormal 
distribution with mean 100 ms and 15 ms as mean service time. 
MapReduce jobs arrive to the system with a mean of 2 min and 
each task has 10 min execution time on average. We use 5 
MapReduce slots per host. Services QoS ratio in all of our 
simulations remains between 0.09 and 0.2, thus ensuring that web 
request response time requirements are never violated. The ratio 
gets closer to 1 when the number of web services clients exceeds 
10000. The average queue length for web requests is 0.8 for 1000 
clients and 5.5 for 5000 clients.  

We use a number of metrics reported in Table 3 to compare our 
predictive scheduler (Pred.) with the state of the art instantaneous 
green energy usage (Inst.) [16] when using only wind, only solar 
and combined two green energy sources.  We define GE 

Efficiency as the ratio of the green energy doing useful work 

versus the total green energy available: GEuseful_work / GEtot. 

Energy consumed by a task that is terminated before completion is 

not counted as a part of GEuseful_work. Green energy under-

prediction is penalized by this metric. The percentage of jobs that 
are terminated as a result of the lack of green energy at the 
beginning of the scheduling interval, % incomplete jobs, is 

calculated relative to the overall number of jobs completed using 
green energy. This occurs when jobs launched with currently 
available green energy in a previous scheduling interval cannot be 
sustained due to the energy availability drop in the subsequent 
interval. Lastly, the efficiency of the system is in terms of green 
energy usage, GE Job Ratio,  is defined as the total amount of 

work done with green energy, JobsGE, over the total work done in 

the system, Jobstot: JobsGE/Jobstot.  

Table 3 shows that prediction improves green energy efficiency 
up to 3x relative to instantaneous energy. The main reason for this 
result is that the system has good quality information on green 
energy availability for a longer interval and hence can make better 
scheduling decisions. Therefore, less green energy is wasted and 
5x fewer MapReduce tasks need to be terminated. Finally, our 
predictive scheduler increases the number of MapReduce tasks 
executed with green energy by 2x relative to the instantaneous 
approach as a result of more accurate energy provisioning. Figure 
2 shows how the average completion time of MapReduce jobs 
changes over time as a function of the way green energy is used. 
The baseline case uses only brown energy to run a mix of services 
with just enough MapReduce jobs so that services response time 
constraints and performance requirements of MapReduce jobs 
(maximum 10% hit to completion times) are met. In this scenario, 
we create the MapReduce jobs at the same rate to highlight the 
green energy effect more clearly. Our green energy prediction 
scheduler decreases MapReduce task completion times on average 
by 20%. In contrast, instantaneous usage of green energy results 
in 12% higher average batch task completion times compared to 
prediction. 

Total BE w/o GE Add. BE for Inst. Add. BE for Pred. 

240 kWh 4.6 kWh 0.64 kWh 

 

Table 4: Brown Energy for Inst. vs. Pred. Energy 

An alternate way to compare using predicted vs. instantaneous 
green energy schedulers is to supplement with brown energy 
whenever there is not enough green energy to complete batch 

 Wind Energy Solar Energy Combined 

 Inst. Pred. Inst. Pred. Inst. Pred. 

GE Efficiency 30% ± 2.5% 90% ± 2% 60% ± 5 % 93% ± 2 % 72% ± 5 % 93% ± 3 % 

GE Job Ratio 35% ± 5 % 50% ± 5% 28% ± 4 % 45% ± 3% 40% ± 4 % 55% ± 5 % 

% incomplete jobs 10% ± 3.3 % 1.3% ± 0.4 % 8.6% ± 2.5 % 2.4% ± 0.5 % 12% ± 2.5 % 3% ± 0.5 % 

 

Table 3: Comparison of instantaneous and predicted green energy with different alternative energy sources 
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Figure 2: Average completion time of MapReduce tasks 



 

 

jobs.  In this way we ensure that all service jobs meet their 
response time requirements and all batch jobs complete, so none 
are terminated. The first column of Table 4 shows the amount of 
brown energy needed to run all the tasks in the absence of green 
energy. When we use green energy instantaneously and do not 
terminate any tasks when there is not enough green energy 
available, we need extra 4.6 kWh of brown energy per data center 
container, but if we use our predictor, the extra brown energy 
needed is decreased by more than 7x to 0.64 kWh. 

6. CONCLUSIONS 
As the cost of brown energy is becoming a critical bottleneck in 
data center environments, the need for alternative energy sources 
is growing. In this paper we present a novel green energy 
predictor, along with a data center scheduling policy which uses 
prediction information to obtain better performance for batch jobs 
without significantly affecting the performance of latency 
sensitive web requests. We use a simulation platform to compare 
our predictive policy with instantaneous use of green energy. Our 
simulation platform has been verified by measurements on real 
systems, with maximum 8% error across all relevant metrics. Our 
results show that prediction leads to 3x better green energy usage 
and reduces the number of terminated tasks up to 7.7x compared 
to instantaneous green energy usage. The response time 
requirements of web requests stay well below the 90th%ile during 
all the experiments. 
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