

Utilizing Green Energy Prediction to Schedule

 Mixed Batch and Service Jobs in Data Centers
Baris Aksanli, Jagannathan Venkatesh, Liuyi Zhang, Tajana Rosing

Computer Science and Engineering Dept. (CSE)
University of California, San Diego

La Jolla, CA

E-mail: {baksanli, jvenkate, liz004, tajana}@ucsd.edu

ABSTRACT

As brown energy costs grow, renewable energy becomes more
widely used. Previous work focused on using immediately
available green energy to supplement the non-renewable, or
brown energy at the cost of canceling and rescheduling jobs
whenever the green energy availability is too low [16]. In this
paper we design an adaptive data center job scheduler which
utilizes short term prediction of solar and wind energy production.
This enables us to scale the number of jobs to the expected energy
availability, thus reducing the number of cancelled jobs by 4x and
improving green energy usage efficiency by 3x over just utilizing
the immediately available green energy.

1. INTRODUCTION
Green energy sources promise to mitigate the issues surrounding
non-renewable generation, but their output is very susceptible to
environmental changes. This limits the use of green energy in
time-sensitive applications. Prediction can reduce the uncertainty
of the available resources, allowing end-users to scale demand
with the predicted supply [17]. Data centers are a significant
source of energy consumption with an estimated 2% global
greenhouse gas emissions attributed to them [18]. However, the
time-sensitive nature of their service-level workloads has
precluded the use of green energy, as jobs might need to be
stopped when the available green energy drops [16].

Data centers also have longer-running batch jobs (on the order of
tens of minutes [9]) whose performance is measured in terms of
throughput and job completion times instead of latency guarantees
(e.g. web crawling, index update in search engines, web log
analysis [07]). A number of computing frameworks have been
developed to simplify the process of those jobs. Examples
include MapReduce [25], Dryad [26], and Pregel [5]. The fault-
tolerant nature of these frameworks mitigates source instability,
allowing execution of a subset of the tasks in a job in order to
scale with the available energy, as well as allowing re-execution
of cancelled tasks that have been stopped due to a sudden lack of
input energy.

Green energy prediction over short time intervals (tens of
minutes) alleviates these issues by scaling the workload to the
expected available green energy, resulting in better maintenance
of forward progress and allowing more tasks/jobs to continue their
execution even if instantaneous green energy supply drops below
the necessary amount. The system offsets the remainder of the
immediate need with brown energy with the assurance that over
the prediction interval the average green energy will ultimately be
available. This allows a more efficient use of the available energy;
reducing the amount of wasted green energy and the number of
tasks/jobs that must be re-executed; and ultimately, increasing the
overall throughput of the data center.

The contribution of this paper is to develop a new data center job
scheduling methodology that effectively leverages green energy
prediction. We simulate a data center of 200 Intel Nehalem
servers using measured data obtained on a small test bed of
Nehalem servers that ran a mix of services (Rubis [6]) and batch
jobs (MapReduce[8]). Our scheduler ensures that the required
response time targets for services are met while maximizing the
completion times and the number of MapReduce tasks run. We
use green power data from a solar installation in San Diego [15],
and wind power from National Renewable Energy Laboratory
(NREL) [14] as our sources of green energy. Our results show
maximum increase of 3x in green energy usage efficiency, a 1.6x
increase in the amount of work performed by green energy over
brown energy, and a 7.7x reduction in the number of jobs
terminated due to the lack of instantaneously available green
energy.

2. RELATED WORK

2.1 Energy Prediction
Solar energy prediction is typically obtained with estimated
weighted moving average (EWMA) models, because of its
relative consistency and periodic patterns [19]. As long as the
weather conditions remain consistent within a period, the
prediction is accurate, but becomes inaccurate, with mean error
well over 20%, with frequent weather changes. Recent work
utilizing small-scale solar generation uses a weather-conditioned
moving average (WCMA), taking into account the mean value
across days and a measured factor of solar conditions in the
present day relative to previous days [20]. While this work
provides only a single future interval of prediction, it specifically
addresses inconsistent conditions, with a mean error of under
10%.

Wind energy prediction can be separated into two major areas:
time-series analysis of power data; and wind speed prediction and
conversion into power. Kusiak et al. [21] presents a comparison of
several methodologies of time-series modeling of wind farms. The

Reprinted from the proceedings of HotPower’11 with permission.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HotPower’11, October 23, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0981-3/11/10…$10.00.

boosting-tree algorithm with both wind speed and power data
performs well in their analysis, while the integrated model, a time-
series analysis utilizing only wind speed measurements, performs
poorly for calculating wind power, likely due to the cubic
relationship between wind speed and power. Giebel et al. [22]
focuses on the latter, describing a number of meteorological
models including Numerical Weather Prediction (NWP), which
forecasts atmospheric conditions over longer term. They use the
resulting predictions to simulate the output of a wind farm
providing accurate estimates for 3-6 hour time periods. However,
this comes at the cost of needed a whole data center to calculate
prediction. Sanchez et al. [24] suggest a statistical forecasting
system that generates power curves (wind speed vs. wind power)
for each turbine based on meteorological information and machine
characteristics. They then utilize the power curves and available
wind data for forecasting.

2.2 Green Energy in Data Centers
Green energy usage in a data center environment is a relatively
new topic. Gmach et al. [2] augment a data center with PV and
municipal solid waste based energy. However, since solid waste
energy supply is constant over time, they do not address the
problem of variability in renewable energy supply. Lee et al. [3]
model an optimization problem which uses the market prices of
brown and green energy to decide how much energy of each type
should be bought in each interval. They do not make server level
scheduling decisions based on the amount of green energy.

Stewart and Shen [4] analyze the energy requirement distributions
of different requests and how to integrate green energy to the
system. They state that the variable nature of green energy can be
a problem, but do not propose solutions. Gmach et. al. [1] use
wind and solar energy to cap the power usage of a data center
environment. The paper addresses the problem of variability of
green energy and overcomes this problem by adding extra energy
storage. Krioukov et al. [16] use renewable energy for execution
of MapReduce type jobs. They schedule MapReduce tasks with
available green energy, but terminate them when the scheduler
realizes that there is not enough green energy in subsequent
intervals.

Our work, in contrast, uses prediction methods to estimate the
amount of green energy in a given interval and utilizes that data to
make decisions about scheduling policies of individual servers.
We aim to increase the green energy usage efficiency by
prediction as well as reduce the destructive impact of the variable
nature of the green energy sources on batch job completion times.
Additionally, unlike previous work, we include service jobs and
batch jobs together in our model to obtain a more realistic system
view, as data centers normally see both types of workloads.

3. SOLAR AND WIND ENERGY

PREDICTION
The focus of current work on large-scale green energy prediction
is on medium to long-range time horizons lasting from hours to
days. As such, the techniques are highly complex, requiring
intensive data acquisition and analysis from using SCADA units
[19] for solar energy to entire data centers [22] for NWP wind
prediction models. Our prediction interval needs to be only as
long as the workloads we desire to schedule, which is on the order
of tens of minutes (our predictor uses 30 min). We chose this
interval based on run-time experiments on the scalable, fault-
tolerant Hadoop framework [8], which we use as our batch

workload. Furthermore, as the response time constraints of
services that run in data centers can be quite short (tens of ms),
our job scheduler and predictor need to be fast. As a result, we
designed solar and wind energy prediction models of lower
complexity and shorter time horizons.

3.1 Solar Prediction Methodology
We applied various time-series prediction algorithms described in
the related work to the output data retrieved from a solar farm at
the University of California, San Diego, [15]. While most solar
prediction algorithms are accurate when weather conditions are
stable, EWMA algorithms have 32.6% mean error in variable
weather. The WCMA algorithm [20], when repurposed by us for
larger solar installations (instead of the wireless sensor networks it
was originally designed for), performed very well, with a mean
error of 9.6% for 30 min prediction window even in artificially-
created worst-case scenarios.

3.2 Wind Prediction Methodology
We develop a novel, low-overhead predictor that utilizes readily
available data that has been shown to strongly correlate with wind
energy prediction [21]: wind speed and wind direction. Our
algorithm produces weighted nearest-neighbor (NN) tables to
generate wind power curves using available wind speed and
direction data at each 30-minute interval. Weighted tables allow
the algorithm to adapt to seasonal changes by weighting recent
results highly, while the power curves offer flexibility, allowing
the algorithm to be used with different wind farms. The
appropriate power curve table gets updated using the current
interval’s observed wind velocity, direction, and output power as
follows:

Pnew (v, d) = α*Pobs (v, d, t) + (1-α)*Pold (v, d) (1)

here Pnew(v,d) is the new power curve table entry for a given wind
velocity v and direction d, Pold(v,d) is the existing value for the
same velocity and direction, and Pobs(v,d,t) is the observed value
at time t. While α can vary from 0 to 1, we found most consistent
results with α=0.75, which weights the model more heavily
towards currently observed data. Future interval prediction uses a
table lookup based on the predicted wind velocity and direction:

Ppred (v, d, t+k) = P (v(t+k), d(t+k)) (2)

The algorithm has been tested against a wind farm installation
over a year’s worth of power output data provided by the NREL,
and the meteorological data provided by the National Climatic
Data Center (NCDC). The results show a mean error of 17.2% for
a 30-minute prediction interval, equaling or outperforming the
time-series models described in [21], at much lower
computational cost.

4. GREEN ENERGY SCHEDULING AND

DATA CENTER MODELING
Our goal in this work is to evaluate the benefit of green energy
prediction for increasing the data center job throughput while not
sacrificing service jobs’ response time constraints. To accomplish
this we designed both predictive and instantaneous green energy
based schedulers and compare them to the baseline of using only
brown energy. The scheduler uses two separate job arrival queues
as shown in Figure 1. One queue is for web services that have
response time requirements (e.g. 90th percentile should be less
than 150ms), and the other for batch jobs which are more

concerned about throughput and job completion time. When a
web services client request arrives, the controller allocates a
server that has the smallest number of batch jobs running on it in
order to reduce the interference effects between these two types of
workloads. Additionally, we put a limit to the number of clients a
host can serve to distribute the web-requests evenly among
servers. This limit is determined by using current number of
clients and total number of host machines. For simplicity, we
assume that each server has at minimum one web services request
queue, and one or more batch jobs slots to execute. Web services
start execution whenever there are available computing resources
(CPU and memory) to ensure their response time requirements are
met whenever possible. Therefore, we guarantee that the system
provides enough brown energy to maintain these service requests.
In this work we use Rubis as representative of web services [6].
Based on our measurements and [11] we model the interarrival
time of Rubis requests generated by a client using a lognormal
distribution.

We use open source version of MapReduce, Hadoop [8], to
represent batch jobs. Input data of any given job is split and
processed by many map/reduce tasks distributed across a fixed
number of map/reduce slots in a cluster as shown in Figure 1. If
there are more tasks than the available slots, the tasks without
slots are queued. If any task fails, the MapReduce scheduler starts
a fresh copy the task. The arrival process of this type of jobs is
modeled by a lognormal distribution, as demonstrated in [9]. The
total number of servers given to a job depends on the energy
availability & green energy scheduling algorithms. At each time
instance, power consumption of servers is estimated using a linear
model based on CPU utilization as in [10]. The overall data center
energy cost is calculated using aggregate server power scaled by
the power utilization efficiency ratio (PUE) to account for the
impact of other sources of inefficiencies (e.g. cooling costs). We
use our data center test bed measured average PUE value of 1.26.

Predictive green energy scheduler: Our green energy predictor
uses a 30-min prediction interval, a duration that is longer than
that of our run-time tests of MapReduce jobs to ensure enough
energy is available to finish the tasks. The predictor provides the
scheduler with an estimate of the next period’s average green
energy availability at the beginning of each batch job allocation
interval. It then computes the number of batch job slots that can
be used for the given amount of energy in that interval. When
computing the number of extra slots the scheduler uses the
average power/slot information we got from our measurements
(see next subsection). If this number is greater than the current
number of available slots, the remaining extra slots are distributed
to the active MapReduce cluster, so that they can run more tasks
in parallel. However, if this number is smaller, then the scheduler
deallocates some jobs. Jobs that run more concurrent tasks than
their base requirement have their slots reduced first. The tasks
running in deallocated slots are either immediately terminated or
restarted with green energy later on (jobs using more than needed
slots), or continue but use brown energy instead. This decision is
made depending on the number of concurrent tasks in a job. The
energy consumed to run the terminated jobs in the previous
interval is wasted. In the results section, we quantify this cost of
incorrect energy prediction by using the green energy usage
efficiency metric. The main benefit of a predictor is that the
number of deallocated slots for batch jobs can be dramatically
reduced, and the number of available slots increased.

Instantaneous green energy scheduler: We compare the impact
of green energy prediction to the instantaneous use of green
energy presented in [16]. To simplify evaluation we use the same
algorithm as predictive scheduler, but with a 1min scheduling
interval which reflects the instantaneous case well.

4.1 Model validation using experimental

testbed
We developed a discrete event-based simulation platform for
scheduling a mix of service and batch jobs in a data center
consisting of hundreds of servers. This enables us to evaluate the
impact of using a combination of brown and green energy at scale.
To ensure accuracy of our estimates, the parameters for our event-
based simulator are obtained from measurements on Intel
Nehalem [12] servers when running a mix of service (Rubis [6])
and batch workloads (MapReduce [7]) within Xen VMs. Rubis
and MapReduce are run in separate VMs, with MapReduce run
across 2 VMs, one utilizing 4 cores, and the other varying the
number of cores occupied. Rubis is run with 9000 concurrent
users.

cores MapReduce 1-4 5 6 7 8

Rubis QoS 0.047 0.08 0.1 0.4 0.93

MapReduce Perf. 100% 94% 88% 83% 81%

Table 1: Measured interference of MapReduce and Rubis

Table 1 shows the measurements we obtained by scheduling an
increasing number of MapReduce tasks on the same machine with
service requests. We report a measure of normalized response
time as Quality of Service (QoS) ratio, which is calculated using
90th percentile response time over the expected response time (for
Rubis it is 150ms). We see that even in the worst case, where we
allocate the maximum number of available cores to MapReduce
jobs, normalized response time of Rubis, as measured by QoS
ratio, is still less than 1. In addition, we see that the worst case
performance impact on normalized MapReduce job completion
times is maximum 20%. Mean measured service time of a single
map or reduce task is around 10 minutes, though the maximum
can be as high as 20 min, thus justifying our choice of 30min
green energy prediction interval.

Web Client Queue

…

Batch Jobs Queue

Green Energy Supply Information

Request Queues

Servers …

 Slots

Scheduler Brown Energy Supply

Figure 1: System architecture

 Measured Simulated Error

Avg. Power Consumption 246 W 251 W 3%

Rubis QoS ratio 0.08 0.085 6%

Avg. MapReduce Comp. Time 112 min 121 min 8%

Table 2: Verification of simulation outputs

Given the measurements presented above, in our simulations we
use 150ms as the target Rubis response time with 12ms service
times for 1000 to 5000 clients representing different times in a
day, 2min mean arrival time of MapReduce jobs [9] with average
execution time of 10 min. To ensure that in our simulations we
have at most 10% performance impact on MapReduce tasks, we
use 5 slots per server. We compare simulation results using this
setup to actual measurements on the Nehalem server. Table 2
shows that the average error is well below 10% for all quantities
of interest, with power estimates having only 3% average error,
while performance for services has only 6% and MapReduce
completion times are within 8%.

5. RESULTS
We use our discrete event-based simulation platform to schedule a
mix of service (Rubis) and batch jobs (MapReduce) in typical data
center container consisting of 200 Intel Nehalem servers. The
overall duration of simulation is 4.5 days. Simulations are
repeated until we obtain a statistically stable average.

Each server has a single web service queue that servers multiple
clients. Incoming client requests are distributed over the servers
evenly. The client arrival distribution is assumed to be exponential
as in [23], while client requests are generated using a lognormal
distribution with mean 100 ms and 15 ms as mean service time.
MapReduce jobs arrive to the system with a mean of 2 min and
each task has 10 min execution time on average. We use 5
MapReduce slots per host. Services QoS ratio in all of our
simulations remains between 0.09 and 0.2, thus ensuring that web
request response time requirements are never violated. The ratio
gets closer to 1 when the number of web services clients exceeds
10000. The average queue length for web requests is 0.8 for 1000
clients and 5.5 for 5000 clients.

We use a number of metrics reported in Table 3 to compare our
predictive scheduler (Pred.) with the state of the art instantaneous
green energy usage (Inst.) [16] when using only wind, only solar
and combined two green energy sources. We define GE

Efficiency as the ratio of the green energy doing useful work

versus the total green energy available: GEuseful_work / GEtot.

Energy consumed by a task that is terminated before completion is

not counted as a part of GEuseful_work. Green energy under-

prediction is penalized by this metric. The percentage of jobs that
are terminated as a result of the lack of green energy at the
beginning of the scheduling interval, % incomplete jobs, is

calculated relative to the overall number of jobs completed using
green energy. This occurs when jobs launched with currently
available green energy in a previous scheduling interval cannot be
sustained due to the energy availability drop in the subsequent
interval. Lastly, the efficiency of the system is in terms of green
energy usage, GE Job Ratio, is defined as the total amount of

work done with green energy, JobsGE, over the total work done in

the system, Jobstot: JobsGE/Jobstot.

Table 3 shows that prediction improves green energy efficiency
up to 3x relative to instantaneous energy. The main reason for this
result is that the system has good quality information on green
energy availability for a longer interval and hence can make better
scheduling decisions. Therefore, less green energy is wasted and
5x fewer MapReduce tasks need to be terminated. Finally, our
predictive scheduler increases the number of MapReduce tasks
executed with green energy by 2x relative to the instantaneous
approach as a result of more accurate energy provisioning. Figure
2 shows how the average completion time of MapReduce jobs
changes over time as a function of the way green energy is used.
The baseline case uses only brown energy to run a mix of services
with just enough MapReduce jobs so that services response time
constraints and performance requirements of MapReduce jobs
(maximum 10% hit to completion times) are met. In this scenario,
we create the MapReduce jobs at the same rate to highlight the
green energy effect more clearly. Our green energy prediction
scheduler decreases MapReduce task completion times on average
by 20%. In contrast, instantaneous usage of green energy results
in 12% higher average batch task completion times compared to
prediction.

Total BE w/o GE Add. BE for Inst. Add. BE for Pred.

240 kWh 4.6 kWh 0.64 kWh

Table 4: Brown Energy for Inst. vs. Pred. Energy

An alternate way to compare using predicted vs. instantaneous
green energy schedulers is to supplement with brown energy
whenever there is not enough green energy to complete batch

 Wind Energy Solar Energy Combined

 Inst. Pred. Inst. Pred. Inst. Pred.

GE Efficiency 30% ± 2.5% 90% ± 2% 60% ± 5 % 93% ± 2 % 72% ± 5 % 93% ± 3 %

GE Job Ratio 35% ± 5 % 50% ± 5% 28% ± 4 % 45% ± 3% 40% ± 4 % 55% ± 5 %

% incomplete jobs 10% ± 3.3 % 1.3% ± 0.4 % 8.6% ± 2.5 % 2.4% ± 0.5 % 12% ± 2.5 % 3% ± 0.5 %

Table 3: Comparison of instantaneous and predicted green energy with different alternative energy sources

80

90

100

110

120

130

0 2500 5000

A
v
er

ag
e

T
as

k
 C

o
m

p
le

ti
o
n

 T
im

e
(m

in
)

Simulation Time (min)

w/o green energy

Instantaneous

Prediction

Figure 2: Average completion time of MapReduce tasks

jobs. In this way we ensure that all service jobs meet their
response time requirements and all batch jobs complete, so none
are terminated. The first column of Table 4 shows the amount of
brown energy needed to run all the tasks in the absence of green
energy. When we use green energy instantaneously and do not
terminate any tasks when there is not enough green energy
available, we need extra 4.6 kWh of brown energy per data center
container, but if we use our predictor, the extra brown energy
needed is decreased by more than 7x to 0.64 kWh.

6. CONCLUSIONS
As the cost of brown energy is becoming a critical bottleneck in
data center environments, the need for alternative energy sources
is growing. In this paper we present a novel green energy
predictor, along with a data center scheduling policy which uses
prediction information to obtain better performance for batch jobs
without significantly affecting the performance of latency
sensitive web requests. We use a simulation platform to compare
our predictive policy with instantaneous use of green energy. Our
simulation platform has been verified by measurements on real
systems, with maximum 8% error across all relevant metrics. Our
results show that prediction leads to 3x better green energy usage
and reduces the number of terminated tasks up to 7.7x compared
to instantaneous green energy usage. The response time
requirements of web requests stay well below the 90th%ile during
all the experiments.

7. ACKNOWLEDGEMENTS
This work was sponsored in part by the Multiscale Systems
Center (MuSyC), National Science Foundation (NSF) Project
GreenLight, NSF ERC CIAN, NSF Variability Expedition, NSF
Flash Gordon, CNS, NSF IRNC TransLight/StarLight, Oracle,
Microsoft and Google.

8. REFERENCES
[1] D. Gmach, J. Rolia, C. Bash, Y. Chen, T. Christian, A. Shah, R.

Sharma and Z. Wang. “Capacity Planning and Power Management
to Exploit Sustainable Energy”. International Conference on
Network and Service Management. CNSM’10. 2010.

[2] D. Gmach, Y. Chen, A. Shah, J. Rolia, C. Bash, T. Christian, R.
Sharma. “Profiling sustainability of data centers”. Sustainable

Systems and Technology (ISSST), 2010 IEEE International
Symposium. 2010

[3] K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, M. Martonosi.
“Capping the brown energy consumption of Internet services at low
cost”. In Proceedings of the International Conference on Green
Computing. 2010.

[4] C. Stewart and K. Shen. ‘Some Joules Are More Precious Than
Others: Managing Renewable Energy in the Datacenter”. 4th

Workshop on Power-Aware Computing and Systems. HotPower’09.
2009.

[5] G. Malewicz, M. H. Austern, A. J.C Bik, J. C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 international
conference on Management of data (SIGMOD '10).

[6] Rubis. http://rubis.ow2.org/

[7] C. Tang, S. Tara, R. Chang, C. Zhang. “Black-Box Performance
Control For High-Volume Non-Interactive Systems”. USENIX ’09.
2009.

[8] Hadoop. http://hadoop.apache.org/

[9] S. Kavulya, J. Tan, R. Gandhi and P. Narasimhan. “An Analysis of
Traces from a Production MapReduce Cluster”. Carnegie Mellon

University, Parallel Data Lab. Techinal Report. DOI: CMU-PDL-
09-107.

[10] D. Economou, S. Rivoire, C. Kozyrakis, P. Ranganathan. “Full
system power analysis and modeling for server environments”. In

Workshop on Modeling Benchmarking and Simulation (MOBS),
June 2006.

[11] D. Ersoz, M. S. Yousif, and C. R. Das. “Characterizing Network
Traffic in a Cluster-based, Multi-tier Data Center”. In Proceedings of

the 27th International Conference on Distributed Computing
Systems (ICDCS).

[12] Intel Microarchitecture Nehalem.

http://www.intel.com/technology/architecture-silicon/next-gen

[13] Luiz André Barroso, Urs Hölzle. The data center as a computer: An
Introduction to the Design of Warehouse-Scale Machines, 2009.

[14] National Renewable Energy Laboratory. http://www.nrel.gov/

[15] Energy Recommerce. http://www.mypvdata.com/

[16] A. Krioukov, C. Goebel, S. Asplaugh, Y. Chen, D. Culler, R. Katz.
“Integrating Renewable Energy Using Data Analytics Systems:
Challenges and Opportunities”. IEEE Data Engineering Bulletin.
March 2011.

[17] J. Tanega. Towards Cooperative Grids: Sensor/Actuator Networks
for Renewables Integration. Sensys 2010 Doctoral Colloquium.
2010.

[18] B. Watson, A. Shah, M. Marwah, C. Bash, R. Sharma, C. Hoover, T.
Christian, C. Patel. Integrated Design and Management of a
Sustainable Data Center. Proceedings of IPACK2009. 2009.

[19] C. Holt. Forecasting seasonals and trends by exponentially weighted
moving averages. International Journal of Forecasting, 2004.

[20] J. Piorno, C. Bergonzini, D. Atienza, T. Rosing. Prediction and
management in energy harvested wireless sensor nodes. University
of California, San Diego, 2010.

[21] A. Kusaik, H. Zheng, Z. Song. “Short term prediction of wind farm
power: A Data Mining approach”. IEEE TEC, Vol. 24, No. 1, pp.
125-136, March 2009.

[22] G. Giebel, R Brownsword, G Kariniotakis. “The State-of-the-Art in
short-term prediction of wind power – A literature overview”.
Project ANEMOS Deliverable Report. August 2003.

[23] D. Meisner, T. F. Wenisch. “Stochastic queuing simulation for data
center workloads”. Proc. of the Workshop on Exascale Evaluation
and Research Techniques (EXERT), Mar. 2010.

[24] I. Sanchez: “Short-term prediction of wind energy production”.
International Journal of Forecasting, Vol. 22, pp 43-56. 2006.

[25] J. Dean and S. Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (January 2008),
107-113.

[26] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. 2007. Dryad:
distributed data-parallel programs from sequential building blocks.
SIGOPS Oper. Syst. Rev. 41, 3 (March 2007), 59-72.

