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// A modular approach breaks IoT applications 

up into functional units called context engines, 

whose I/O transformations are driven by 

machine learning. In a smart-grid case study, 

this approach provided better accuracy and 

scaling than the current monolithic approach. //

THE INTERNET OF Things (IoT) 
represents the collection of sensing 
and actuation devices backed by the 
growing Internet infrastructure.1 
This creates a scenario unlike that of 
previous ubiquitous sensing. Those 
former approaches assumed a level 
of inherent compatibility and control 
over the sensors in their systems2 
and applications that used a man-
ageable amount of raw sensor data. 
In the IoT, the number of available 
sensing and actuation devices has 

grown rapidly in the last few years.3 
In addition, ubiquitous connectivity 
and cloud storage have largely miti-
gated the primary research issues in 
pervasive sensing.

Now, the focus is on the applica-
tion layer. IoT applications operate 
in a dynamic environment in which 
sensors and actuators move through 
an application’s domain. The raw 
data in these applications go through 
several levels of processing to pro-
duce a high-level description of the 

environment with discrete semantic 
states called context. Discrete con-
text facilitates intuitive reasoning in 
exchange for raw data precision and 
can be reused across applications.

However, current context-aware 
IoT applications are still end-to-end 
implementations tightly coupled to 
the initial infrastructure. Each ap-
plication maintains its own data 
and user interactions, which doesn’t 
promote adaptation to the changing 
number and heterogeneity of I/O de-
vices and IoT infrastructure.

We previously proposed smaller, 
simpler functional units called con-
text engines, which provide inter-
mediate computational steps toward 
an overall application.4 They create 
a flexible framework that promotes 
general-purpose machine learning 
(ML) and reduces processing redun-
dancy and latency with minimal ac-
curacy impact.

Another key issue for IoT applica-
tions is scalability: applications should 
scale well both with the number of 
inputs and to the available comput-
ing environment. In the IoT, context-
aware applications often involve visu-
alization (for example, user behavior 
tracking and vehicular safety5) or ac-
tuation (for example, smart spaces6). 
Scaling such applications means han-
dling more users or covering a larger 
physical or virtual space in the pres-
ence of additional embedded devices 
for sensing or actuation, data aggre-
gation, and computation. Here, we 
analyze how our modular approach 
to context-aware applications funda-
mentally improves scaling—the use of 
context engines minimizes overhead 
as the input data and number of com-
putational nodes increase.

System Design
The current state of the art is multi-
input, multi-output applications (see 
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Figure 1a). In this approach, black-
box application implementations 
mask intermediate processing output 
from other applications, leading to 
computational redundancy.

Our context engine approach (see 
Figure 1b) is functionally equiva-
lent to the state of the art. The con-
text engines are hierarchical and 
multiple- input, single-output. Ex-
posing the intermediate output re-
duces application complexity and re-
dundancy and generates higher-level, 
intermediate context that applica-
tions can share. These improvements 
might come at the cost of accuracy,4 
but careful application design can 
minimize this cost.

Smaller hierarchical context en-
gines represent simpler data transla-
tion at the cost of more context en-
gines per application. This promotes 
the use of general data transforma-
tion in each context engine—using 
ML, instead of application-specific 
code, to generate outputs.

We investigated matrix-based ML 
algorithms, which represent the data 
translation of each context engine. 
We implemented TESLA (Taylor 
Expanded Solar Analog Forecast-
ing),7 a characteristic model-gen-
eration algorithm with O(nα) com-
plexity, where n is the number of 
inputs and α is the Taylor expansion 
order of the data translation. Such 
systems can be solved by regres-
sion methods— for example, least-
squares estimation—that require at 
least m (m ∝ nα) independent obser-
vations for training. This becomes 
time inefficient and space inefficient 
as α increases, but higher complexity 
enables a better model fit. Although 
we chose TESLA for our case study 
and scalability proofs, other ML al-
gorithms (Bayesian networks, hid-
den Markov models, and neural net-
works8) are applicable.

The hierarchical approach raises 
questions about the complexity, la-
tency, and accuracy of breaking apart 
a compact application. Here, we vali-
date our approach by proving that 
dividing the processing of n inputs 
from a single context engine actually 
reduces application complexity.

For general context engine repre-
sentations with n inputs and α com-
plexity, the computational overhead 

is nα. We can divide one engine into 
two stages, forming multiple engines 
of an arbitrary number of inputs A 
and a resulting total complexity of

n
A
Aα + n

A
⎛
⎝⎜

⎞
⎠⎟
α

.

As the system becomes more modu-
lar, A decreases at the cost of in-
creasing n/Α (the number of con-
text engines). Maximum division 
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FIGURE 1. Two approaches to Internet-of-Things applications. (a) The state of the 

art is a monolithic application implementation. (b) In our approach, applications publish 

intermediate context for reuse. Multi-input, single-output functional units called context 

engines perform general statistical learning.4 Exposing the intermediate data reduces 

application complexity and redundancy.
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occurs when A = 2-input context 
engines. Analyzing the system, we 
find that when α > log23 ~ 1.6 (any 
nonlinear context engine), maxi-
mum division minimizes computa-
tional complexity.4

Although maximum division isn’t 
necessarily achievable for every ap-
plication, any step toward increas-
ing modularization of an application 
reduces computational complexity. 
For example, vehicle safety and user 
feedback applications can be modu-
larized per vehicle or user, and smart 
spaces can be broken up into spatial 
domains. With fewer inputs per con-
text engine, each unit represents a 
simpler transformation, and we ex-
pect smaller α. However, even if α 
remains high, we can prove reduced 
complexity. A more rigorous analysis 
of reducing overall complexity and 
truncation error appears in our pre-
vious work.4

System Scalability
We leverage and extend the defini-
tions of scalability from distrib-
uted computing9 and IoT systems10 
to quantify speedup changes under 
two conditions:

• the change in the number of 
computational nodes for an ap-
plication (strong scaling) and

• the change in the amount of in-
put data (load scaling).

We define speedup as

( ) =
≤ ≤ −
> −

S k N
k k N

k N
,

,1 1

1, 1
,

where k is the number of cores and 
N is the number of inputs. Because 
we generalize the processing in 
each context engine to the equiva-
lent computation, we can deal with 
functional order as a general term 

representing the polynomial model’s 
complexity and number of inputs.

For strong scaling, the hierarchi-
cal application behaves like a distrib-
uted system, using computational 
nodes as they become available. 
However, even with maximum divi-
sion, speedup is ultimately capped. 
When more than N – 1 computa-
tional nodes become available, there 
are more free nodes than context en-
gines. Some context engines can be 
reallocated to more capable nodes, 
but the system is overprovisioned 
and will scale as it expands.

Load scaling is particularly im-
portant for IoT applications because 
the increasing amount of data re-
quires appropriate handling. Let’s 
consider the general functional rep-
resentation nα for single-stage appli-
cations and (n – 1) ∗ 2α for a maxi-
mally divided set of context engines, 
which represents the overall applica-
tion of n inputs and α complexity. 
We can address the addition of new 
inputs by

• increasing the number of inputs 
of a subset of the existing con-
text engines or

• expanding the hierarchy with 
more low-input context engines.

The former option represents a move 
toward more-monolithic applica-
tions; the latter represents the modu-
lar approach: (n – 1) 2-input context 
engines, each with α complexity.4 In 
the following, we consider this sec-
ond option.

For every m additional inputs, the 
overall system complexity increases 
from nα to (n + m)α. If we expand the 
hierarchy, assuming maximum divi-
sion, for every m inputs, we add at 
most m – 1 context engines, increas-
ing the complexity to (m + n – 1) ∗ 
2α. As m increases, the complexity 

for increasing the number of inputs 
grows much faster than for expand-
ing the hierarchy. Expanding the 
hierarchy achieves linear system 
growth with additional input, dem-
onstrating perfect suitability for 
modular IoT applications with con-
tinuously expanding systems. Fig-
ure 2a compares this growth to the 
equivalent single-stage growth as m 
increases, with fixed n and α = 3.

Figure 2b reports scalability in 
terms of communication overhead—
the amount of data that must be 
transferred for ML training. Each 
context engine trains its ML algo-
rithm to generate output context. 
The training phase of an n-input, 
α-complexity single-stage applica-
tion requires nα input samples and 
a corresponding nα output samples 
from the source and sink devices to 
calculate the TESLA coefficients. 
Our approach with maximum divi-
sion requires 2(n – 1) ∗ 2α, or 2α+1 ∗ 
(n – 1), input and output samples. 
Figure 2b illustrates the tradeoff 
between training multiple context 
engines with fewer inputs versus a 
single context engine with all in-
puts. Our approach achieves linear 
growth in data communication re-
quirements, versus the single-stage 
approach’s exponential growth.

The Case Study
We implemented a case study us-
ing our approach for a distributed, 
scalable application: the residential 
smart grid. Currently, utilities gather 
energy consumption from users 
through smart metering—a single-
stage data-processing system. Utili-
ties can also take into account user 
behavior to improve energy predic-
tion’s accuracy.11 This additional 
context, obtained from wearable 
and house sensors, varies in source, 
data, accuracy, format, and so on. In 
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current systems, the data would go 
directly to the utility, and the data 
heterogeneity would necessitate a re-
designed application to provide en-
ergy prediction. This would signifi-
cantly increase communication and 
processing overhead.

Our approach (see Figure 3) can 
provide the high-level context: en-
ergy prediction and flexibility in the 
next interval (enabling potential kWh 
savings by shutting down loads). Be-
cause the smart grid is naturally dis-
tributed, we can further break down 
data aggregation along the existing 
lines of power distribution: junction 
boxes, transformers, and substa-
tions, which have limited computa-
tional ability. The result is a multitier 
context-aware application that uses 
residential data to determine the flex-
ibility of house loads and uses this 
generated context to determine the 
neighborhood flexibility.

Context Engine Setup
We began at the level of individual 
appliances in a house. Always-on 
appliances (for example, refrigera-
tors) are less flexible than manually 

triggered appliances (for example, 
kitchen and laundry appliances and 
lighting). Smart appliances with em-
bedded systems are potential compu-
tation nodes.

We aimed to identify potential user 
interaction with an appliance and de-
termine whether using this appliance 
was flexible at a given time. We then 
used these intermediate outputs to 
predict the appliance’s energy use in 
the next interval and, consequently, 
the predicted energy flexibility.

We trained the intermediate and 
final outputs with the ground truth 
as follows:

• User interaction was a Boolean 
value derived from analyzing the 
energy or water traces to find the 
intervals during which the appli-
ance was turned on.

• We derived binary appliance 
energy flexibilities from the dis-
tribution of use over time. This 
was unique to each house owing 
to differences in user behavior.

We used these first-stage context 
engine outputs to predict appliance 

usage. Whereas researchers previ-
ously employed just the energy usage 
in time series to predict future inter-
vals’ output,12 we leveraged the user 
context to better learn the profiles of 
manually triggered appliances.

Each house passes its flexibility 
prediction to the next tier: junc-
tion boxes or substations, which in 
turn feed aggregated flexibility pre-
diction to the overarching utility. 
Aggregated flexibility is useful for 
quantifying the energy that can be 
saved; our approach identifies the 
individual loads that combine to 
provide this flexibility. This granu-
larity of feedback control would en-
able the smart grid to perform auto-
mated, scalable residential demand 
and response.

Input and Intermediate Data
Our data was from the Pecan Street 
database (dataport.pecanstreet.org), 
a residential dataset that aggregates 
individual energy and water loads. 
Some houses included information 
about the number and type of oc-
cupants. We selected and replicated 
houses that fell into each category 
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in Table 1 to construct a neighbor-
hood with disparate amounts and 
types of data.

We trained the first-stage con-
text engines with the ground truth 
for user interaction and binary flex-
ibility. Because the Pecan Street 
database doesn’t provide this in-
formation directly, we determined 
interaction by the start of operation 
of manually triggered appliances, 
using the traces. We derived flex-
ibility by observing the aggregate 
appliance usage patterns—that is, 
the daily time range during which 
manual- appliance events were ini-
tiated. The flexible appliances 
we used were washing machines, 
clothes dryers, and dishwash-
ers (owing to their flexible pat-
terns13,14), electric vehicles (owing 

to flexible charging patterns in the 
Pecan Street dataset), and lighting 
(owing to varying light intensity12).

Figure 4 illustrates the usage pat-
tern of House B’s washing machine 
on Mondays, highlighting the ag-
gregate number of instances at each 
time interval. The resulting clusters 
identified the windows of flexibility.

We defined other appliance flex-
ibilities using related research and 
analysis of the traces themselves. For 
example, electric vehicles had three 
states: not plugged in, plugged in but 
not charging, and charging. The sec-
ond and third states represented a 
time frame for flexible use.

Results
To evaluate our approach, we ana-
lyzed its accuracy and scalability.

Accuracy. First, we compared our 
approach’s accuracy with that of 
the state-of-the-art single-stage ap-
proach: one node receiving all the 
raw traces from all houses and 
training over the aggregate flexibil-
ity. For our approach, the mean ab-
solute error (MAE) for energy flex-
ibility was 27.15 percent for House 
A, 14.23 percent for House B, 9.81 
percent for House C, and 6.16 per-
cent for House D. For all houses, the 
MAE was 14.34 percent. The MAE 
for the single-stage approach was 
26.94 percent.

We originally demonstrated that 
modularization introduces trunca-
tion error,4 but this application il-
lustrates the advantage of correlated 
input data. A third-order function 
using data from multiple houses 
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can’t achieve the same accuracy as 
an algorithm operating on a single 
house’s data and producing only 
that house’s energy and flexibil-
ity output. Theoretically, the larger 
application might eventually gain 
similar accuracy with enough train-
ing, even without intermediate con-
text on which to train. However, the 
amount of required training data 
would far exceed the amount in the 
Pecan Street database. Furthermore, 
a model comprising a single house’s 
data and energy already contains 
highly correlated inputs and out-
put and thus provides high accuracy 
with relatively little training and a 
low order.

The single-stage approach col-
lected all the input data from all the 
houses but scaled poorly because it 
required the more complex third- 
order computation in a single con-
text engine to find overall energy 
consumption. Our approach han-
dled the third-order computation 
closer to the edge—by the appliance- 
specific context engines—with fewer 
inputs and lower overall complexity. 
So, our approach at 1,000 inputs 
performed 96 times faster (just over 
3 min) than the single-stage version 
(288 min).

Prediction error also decreased as 
more data sources became available 
(the number of inputs for A < B < C 

< D). This highlights two important 
aspects of our modular approach:

• Flexibility of input types. Dif-
ferent users can provide a lot of 
data or a little data from various 
sources and still generate the 
same output through model 
generation.

• Adaptation to changing or miss-
ing input data. The remaining 
sources can still provide sig-
nificant accuracy, although the 
change in error will be propor-
tional to the correlation between 
the missing input and the output.

Unlike the single-stage application, 
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 1 The four house types retrieved for the case study, with their components.

House type
Percentage of 
neighborhood

Flexible 
appliances

Inflexible 
appliances

Additional 
room-specific 

appliances
Electric 
vehicles

Water–
consuming 
appliances Water flow

A 25 Yes Yes No No Yes No

B 25 Yes Yes Yes No Yes No

C 25 Yes Yes No No Yes Yes

D 25 Yes Yes Yes Yes Yes Yes
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in which a missing input affects over-
all system accuracy, our approach 
limits the primary accuracy loss to 
the context engines that directly or 
indirectly use the missing input.

Scalability. We evaluated our appli-
cation’s latency as the number of 
computational nodes and inputs 
grew. Figure 5a illustrates the scal-
ability on a log–log plot. To inves-
tigate a viable implementation of 
our approach, we maintained a ra-
tio of 10 inputs per context engine. 
This allowed a balanced modular 
multiple-input, single-output imple-
mentation. It also more accurately 
represented the distribution of sen-
sors and computation from the 
lower levels (aggregating data in a 
house) to the upper levels (aggregat-
ing a street or neighborhood in a 

distributor or substation) of the real 
smart-grid hierarchy.

Both applications initially exhib-
ited similar latency when limited to 
the same number of nodes. How-
ever, our approach distributed the 
processing to more nodes as they be-
came available, demonstrating linear 
growth with the number of inputs as 
long as enough nodes were available. 
When no more nodes were available, 
a subset of computation had to be se-
rialized. The single-stage approach, 
without this benefit, scaled exponen-
tially with the number of inputs.

We then investigated how com-
munication scaled in the two ap-
proaches in terms of the amount of 
training data required—data that 
had to be accrued before the context 
engines could generate output. Both 
approaches required O(nα) training 

samples per context engine, but the 
single-stage approach grew expo-
nentially with the number of inputs. 
Because our approach limited n and 
instead grew the number of con-
text engines and the hierarchy, the 
required amount of training data 
scaled linearly. The single-stage ap-
proach had a single O(n3) context 
engine; as n increased, the required 
amount of training data grew expo-
nentially with n (see Figure 5b).

O ur ongoing and future re-
search involves expanding 
the context engine and im-

proving its applicability. Our initial 
context engine results already dem-
onstrate a significant improvement 
in predicting residential energy usage 
and flexibility. However, although 
we learn on all available inputs, we 
don’t necessarily limit ourselves to 
only the best (most correlated) in-
puts. Preliminary correlation analy-
sis has already shown the ability to 
mitigate accuracy losses by eliminat-
ing only the least significant inputs. 
Furthermore, limiting the number 
of inputs can improve each context 
engine’s latency. Formalizing cor-
relation analysis and automatically 
selecting the most appropriate inputs 
from a pool of available sources are 
useful for context-aware applica-
tions operating in an environment 
of changing data. This approach can 
improve efficiency as well as replace 
or update the existing algorithm as 
more accurate or reliable sources en-
ter or leave the system.

Similarly, the context engine is 
currently employed with a number 
of machine-learning algorithms. 
Some of these algorithms are better 
suited than the others for a partic-
ular application, and they all incur 
costs in computational overhead, 
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accuracy, and latency. This can be 
leveraged to define a multi-optimiza-
tion problem for context-aware com-
puting, trading off computational 

complexity, latency, and accuracy. 
The ability to quantify these three 
characteristics and, more impor-
tant, optimize for each is crucial to 

the real-life context-aware applica-
tions in which context engines are 
used: smart spaces, grid automa-
tion, and the IoT. The result is a 
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functional unit that can optimize 
for the most correlated data, train 
using the best available machine- 
learning technique, and generate the 
outputs required, as well as adapt to 
 environment- and user-imposed per-
formance constraints.
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