
2	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

Scalable-
Application
Design for the IoT
Jagannathan Venkatesh, University of California, San Diego

Barış Akşanlı, San Diego State University

Christine S. Chan, Alper S. Akyürek, and Tajana Š. Rosing, University
of California, San Diego

// A modular approach breaks IoT applications

up into functional units called context engines,

whose I/O transformations are driven by

machine learning. In a smart-grid case study,

this approach provided better accuracy and

scaling than the current monolithic approach. //

THE INTERNET OF Things (IoT)
represents the collection of sensing
and actuation devices backed by the
growing Internet infrastructure.1
This creates a scenario unlike that of
previous ubiquitous sensing. Those
former approaches assumed a level
of inherent compatibility and control
over the sensors in their systems2
and applications that used a man-
ageable amount of raw sensor data.
In the IoT, the number of available
sensing and actuation devices has

grown rapidly in the last few years.3
In addition, ubiquitous connectivity
and cloud storage have largely miti-
gated the primary research issues in
pervasive sensing.

Now, the focus is on the applica-
tion layer. IoT applications operate
in a dynamic environment in which
sensors and actuators move through
an application’s domain. The raw
data in these applications go through
several levels of processing to pro-
duce a high-level description of the

environment with discrete semantic
states called context. Discrete con-
text facilitates intuitive reasoning in
exchange for raw data precision and
can be reused across applications.

However, current context-aware
IoT applications are still end-to-end
implementations tightly coupled to
the initial infrastructure. Each ap-
plication maintains its own data
and user interactions, which doesn’t
promote adaptation to the changing
number and heterogeneity of I/O de-
vices and IoT infrastructure.

We previously proposed smaller,
simpler functional units called con-
text engines, which provide inter-
mediate computational steps toward
an overall application.4 They create
a flexible framework that promotes
general-purpose machine learning
(ML) and reduces processing redun-
dancy and latency with minimal ac-
curacy impact.

Another key issue for IoT applica-
tions is scalability: applications should
scale well both with the number of
inputs and to the available comput-
ing environment. In the IoT, context-
aware applications often involve visu-
alization (for example, user behavior
tracking and vehicular safety5) or ac-
tuation (for example, smart spaces6).
Scaling such applications means han-
dling more users or covering a larger
physical or virtual space in the pres-
ence of additional embedded devices
for sensing or actuation, data aggre-
gation, and computation. Here, we
analyze how our modular approach
to context-aware applications funda-
mentally improves scaling—the use of
context engines minimizes overhead
as the input data and number of com-
putational nodes increase.

System Design
The current state of the art is multi-
input, multi-output applications (see

FOCUS: SOFTWARE ENGINEERING FOR THE INTERNET OF THINGS

	 JANUARY/FEBRUARY 2017 | IEEE SOFTWARE� 3

Figure 1a). In this approach, black-
box application implementations
mask intermediate processing output
from other applications, leading to
computational redundancy.

Our context engine approach (see
Figure 1b) is functionally equiva-
lent to the state of the art. The con-
text engines are hierarchical and
multiple-input, single-output. Ex-
posing the intermediate output re-
duces application complexity and re-
dundancy and generates higher-level,
intermediate context that applica-
tions can share. These improvements
might come at the cost of accuracy,4
but careful application design can
minimize this cost.

Smaller hierarchical context en-
gines represent simpler data transla-
tion at the cost of more context en-
gines per application. This promotes
the use of general data transforma-
tion in each context engine—using
ML, instead of application-specific
code, to generate outputs.

We investigated matrix-based ML
algorithms, which represent the data
translation of each context engine.
We implemented TESLA (Taylor
Expanded Solar Analog Forecast-
ing),7 a characteristic model-gen-
eration algorithm with O(nα) com-
plexity, where n is the number of
inputs and α is the Taylor expansion
order of the data translation. Such
systems can be solved by regres-
sion methods—for example, least-
squares estimation—that require at
least m (m ∝ nα) independent obser-
vations for training. This becomes
time inefficient and space inefficient
as α increases, but higher complexity
enables a better model fit. Although
we chose TESLA for our case study
and scalability proofs, other ML al-
gorithms (Bayesian networks, hid-
den Markov models, and neural net-
works8) are applicable.

The hierarchical approach raises
questions about the complexity, la-
tency, and accuracy of breaking apart
a compact application. Here, we vali-
date our approach by proving that
dividing the processing of n inputs
from a single context engine actually
reduces application complexity.

For general context engine repre-
sentations with n inputs and α com-
plexity, the computational overhead

is nα. We can divide one engine into
two stages, forming multiple engines
of an arbitrary number of inputs A
and a resulting total complexity of

n
A
Aα + n

A
⎛
⎝⎜

⎞
⎠⎟
α

.

As the system becomes more modu-
lar, A decreases at the cost of in-
creasing n/Α (the number of con-
text engines). Maximum division

General data transformation

Raw user data

Static data
User feedback
Medical
record info

Raw environment data

Wearables, mobile devices

Raw user data

Wearables High-level information
Health alerts, environmental risks

Control
signals

Control
signals

Health or medical
equipment actuation

Mobile devices

Static data

User feedback
Medical
record info

Raw environment data

Health or medical
equipment actuation

Control signals

High-level information

Health alerts,
environmental risks

Objects

Context
engine

Context
engine

Context
engine

Context
engine

Data plane

BuildingBuilding

Building

Building

Display

Display

User

User

Objects

User

User

Application 1

Application 2

(a)

(b)

FIGURE 1. Two approaches to Internet-of-Things applications. (a) The state of the

art is a monolithic application implementation. (b) In our approach, applications publish

intermediate context for reuse. Multi-input, single-output functional units called context

engines perform general statistical learning.4 Exposing the intermediate data reduces

application complexity and redundancy.

4	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING FOR THE INTERNET OF THINGS

occurs when A = 2-input context
engines. Analyzing the system, we
find that when α > log23 ~ 1.6 (any
nonlinear context engine), maxi-
mum division minimizes computa-
tional complexity.4

Although maximum division isn’t
necessarily achievable for every ap-
plication, any step toward increas-
ing modularization of an application
reduces computational complexity.
For example, vehicle safety and user
feedback applications can be modu-
larized per vehicle or user, and smart
spaces can be broken up into spatial
domains. With fewer inputs per con-
text engine, each unit represents a
simpler transformation, and we ex-
pect smaller α. However, even if α
remains high, we can prove reduced
complexity. A more rigorous analysis
of reducing overall complexity and
truncation error appears in our pre-
vious work.4

System Scalability
We leverage and extend the defini-
tions of scalability from distrib-
uted computing9 and IoT systems10
to quantify speedup changes under
two conditions:

•	 the change in the number of
computational nodes for an ap-
plication (strong scaling) and

•	 the change in the amount of in-
put data (load scaling).

We define speedup as

() =
≤ ≤ −
> −

S k N
k k N

k N
,

,1 1

1, 1
,

where k is the number of cores and
N is the number of inputs. Because
we generalize the processing in
each context engine to the equiva-
lent computation, we can deal with
functional order as a general term

representing the polynomial model’s
complexity and number of inputs.

For strong scaling, the hierarchi-
cal application behaves like a distrib-
uted system, using computational
nodes as they become available.
However, even with maximum divi-
sion, speedup is ultimately capped.
When more than N – 1 computa-
tional nodes become available, there
are more free nodes than context en-
gines. Some context engines can be
reallocated to more capable nodes,
but the system is overprovisioned
and will scale as it expands.

Load scaling is particularly im-
portant for IoT applications because
the increasing amount of data re-
quires appropriate handling. Let’s
consider the general functional rep-
resentation nα for single-stage appli-
cations and (n – 1) ∗ 2α for a maxi-
mally divided set of context engines,
which represents the overall applica-
tion of n inputs and α complexity.
We can address the addition of new
inputs by

•	 increasing the number of inputs
of a subset of the existing con-
text engines or

•	 expanding the hierarchy with
more low-input context engines.

The former option represents a move
toward more-monolithic applica-
tions; the latter represents the modu-
lar approach: (n – 1) 2-input context
engines, each with α complexity.4 In
the following, we consider this sec-
ond option.

For every m additional inputs, the
overall system complexity increases
from nα to (n + m)α. If we expand the
hierarchy, assuming maximum divi-
sion, for every m inputs, we add at
most m – 1 context engines, increas-
ing the complexity to (m + n – 1) ∗
2α. As m increases, the complexity

for increasing the number of inputs
grows much faster than for expand-
ing the hierarchy. Expanding the
hierarchy achieves linear system
growth with additional input, dem-
onstrating perfect suitability for
modular IoT applications with con-
tinuously expanding systems. Fig-
ure 2a compares this growth to the
equivalent single-stage growth as m
increases, with fixed n and α = 3.

Figure 2b reports scalability in
terms of communication overhead—
the amount of data that must be
transferred for ML training. Each
context engine trains its ML algo-
rithm to generate output context.
The training phase of an n-input,
α-complexity single-stage applica-
tion requires nα input samples and
a corresponding nα output samples
from the source and sink devices to
calculate the TESLA coefficients.
Our approach with maximum divi-
sion requires 2(n – 1) ∗ 2α, or 2α+1 ∗
(n – 1), input and output samples.
Figure 2b illustrates the tradeoff
between training multiple context
engines with fewer inputs versus a
single context engine with all in-
puts. Our approach achieves linear
growth in data communication re-
quirements, versus the single-stage
approach’s exponential growth.

The Case Study
We implemented a case study us-
ing our approach for a distributed,
scalable application: the residential
smart grid. Currently, utilities gather
energy consumption from users
through smart metering—a single-
stage data-processing system. Utili-
ties can also take into account user
behavior to improve energy predic-
tion’s accuracy.11 This additional
context, obtained from wearable
and house sensors, varies in source,
data, accuracy, format, and so on. In

	 JANUARY/FEBRUARY 2017 | IEEE SOFTWARE� 5

current systems, the data would go
directly to the utility, and the data
heterogeneity would necessitate a re-
designed application to provide en-
ergy prediction. This would signifi-
cantly increase communication and
processing overhead.

Our approach (see Figure 3) can
provide the high-level context: en-
ergy prediction and flexibility in the
next interval (enabling potential kWh
savings by shutting down loads). Be-
cause the smart grid is naturally dis-
tributed, we can further break down
data aggregation along the existing
lines of power distribution: junction
boxes, transformers, and substa-
tions, which have limited computa-
tional ability. The result is a multitier
context-aware application that uses
residential data to determine the flex-
ibility of house loads and uses this
generated context to determine the
neighborhood flexibility.

Context Engine Setup
We began at the level of individual
appliances in a house. Always-on
appliances (for example, refrigera-
tors) are less flexible than manually

triggered appliances (for example,
kitchen and laundry appliances and
lighting). Smart appliances with em-
bedded systems are potential compu-
tation nodes.

We aimed to identify potential user
interaction with an appliance and de-
termine whether using this appliance
was flexible at a given time. We then
used these intermediate outputs to
predict the appliance’s energy use in
the next interval and, consequently,
the predicted energy flexibility.

We trained the intermediate and
final outputs with the ground truth
as follows:

•	 User interaction was a Boolean
value derived from analyzing the
energy or water traces to find the
intervals during which the appli-
ance was turned on.

•	 We derived binary appliance
energy flexibilities from the dis-
tribution of use over time. This
was unique to each house owing
to differences in user behavior.

We used these first-stage context
engine outputs to predict appliance

usage. Whereas researchers previ-
ously employed just the energy usage
in time series to predict future inter-
vals’ output,12 we leveraged the user
context to better learn the profiles of
manually triggered appliances.

Each house passes its flexibility
prediction to the next tier: junc-
tion boxes or substations, which in
turn feed aggregated flexibility pre-
diction to the overarching utility.
Aggregated flexibility is useful for
quantifying the energy that can be
saved; our approach identifies the
individual loads that combine to
provide this flexibility. This granu-
larity of feedback control would en-
able the smart grid to perform auto-
mated, scalable residential demand
and response.

Input and Intermediate Data
Our data was from the Pecan Street
database (dataport.pecanstreet.org),
a residential dataset that aggregates
individual energy and water loads.
Some houses included information
about the number and type of oc-
cupants. We selected and replicated
houses that fell into each category

Co
m

m
un

ic
at

io
n

ov
er

he
ad

(n
o.

 o
f s

am
pl

es
 n

ee
de

d)

1 2 3

200

150

100

50

0

No. of additional inputs α (TESLA function order)

Fu
nc

tio
na

l c
om

pl
ex

ity
(n

o.
 o

f t
ra

in
in

g
co

m
pu

ta
tio

ns
)

2 43

200

150

100

50

0

Single-stage approach

Context engine approach

Single-stage approach

Context engine approach

(b)(a)

FIGURE 2. Comparing the scalability of the single-stage approach and our context engine approach. (a) Functional complexity. (b)

Communication overhead. As you can see, our approach outperforms the single-stage approach. TESLA stands for Taylor Expanded

Solar Analog.

6	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING FOR THE INTERNET OF THINGS

in Table 1 to construct a neighbor-
hood with disparate amounts and
types of data.

We trained the first-stage con-
text engines with the ground truth
for user interaction and binary flex-
ibility. Because the Pecan Street
database doesn’t provide this in-
formation directly, we determined
interaction by the start of operation
of manually triggered appliances,
using the traces. We derived flex-
ibility by observing the aggregate
appliance usage patterns—that is,
the daily time range during which
manual-appliance events were ini-
tiated. The flexible appliances
we used were washing machines,
clothes dryers, and dishwash-
ers (owing to their flexible pat-
terns13,14), electric vehicles (owing

to flexible charging patterns in the
Pecan Street dataset), and lighting
(owing to varying light intensity12).

Figure 4 illustrates the usage pat-
tern of House B’s washing machine
on Mondays, highlighting the ag-
gregate number of instances at each
time interval. The resulting clusters
identified the windows of flexibility.

We defined other appliance flex-
ibilities using related research and
analysis of the traces themselves. For
example, electric vehicles had three
states: not plugged in, plugged in but
not charging, and charging. The sec-
ond and third states represented a
time frame for flexible use.

Results
To evaluate our approach, we ana-
lyzed its accuracy and scalability.

Accuracy. First, we compared our
approach’s accuracy with that of
the state-of-the-art single-stage ap-
proach: one node receiving all the
raw traces from all houses and
training over the aggregate flexibil-
ity. For our approach, the mean ab-
solute error (MAE) for energy flex-
ibility was 27.15 percent for House
A, 14.23 percent for House B, 9.81
percent for House C, and 6.16 per-
cent for House D. For all houses, the
MAE was 14.34 percent. The MAE
for the single-stage approach was
26.94 percent.

We originally demonstrated that
modularization introduces trunca-
tion error,4 but this application il-
lustrates the advantage of correlated
input data. A third-order function
using data from multiple houses

Energy prediction
context engine

Water use (t)

Activity prediction
context engines

Activity 1 (t)
...

Activity k (t)

Energy (t – m)
Time interval (t)

...
Energy (t)

Flexible-interval
context engineUse analysis (t + 1)

Time interval (t + 1)

Energy �exibility
context engine

Energy
prediction (kWh)
(t + 1)

Appliance
�exibility
(binary) (t + 1)

Energy
prediction (kWh)
(t + 1)

House fexibility
context engine

House fexibility
context engine

House fexibility
context engine

Individual load
�exibilities (kWh)

Washer
context engineDryer

context engineDishwasher
context engine

User or appliance data

Neighborhood or substation
context engine

FIGURE 3. Implementation of a hierarchical approach to residential energy management, with individual homes providing the

higher-level context in the place of raw data, aggregated and passed up the hierarchy. The output per house can vary, depending on

the available types of sensors and actuators.

	 JANUARY/FEBRUARY 2017 | IEEE SOFTWARE� 7

can’t achieve the same accuracy as
an algorithm operating on a single
house’s data and producing only
that house’s energy and flexibil-
ity output. Theoretically, the larger
application might eventually gain
similar accuracy with enough train-
ing, even without intermediate con-
text on which to train. However, the
amount of required training data
would far exceed the amount in the
Pecan Street database. Furthermore,
a model comprising a single house’s
data and energy already contains
highly correlated inputs and out-
put and thus provides high accuracy
with relatively little training and a
low order.

The single-stage approach col-
lected all the input data from all the
houses but scaled poorly because it
required the more complex third-
order computation in a single con-
text engine to find overall energy
consumption. Our approach han-
dled the third-order computation
closer to the edge—by the appliance-
specific context engines—with fewer
inputs and lower overall complexity.
So, our approach at 1,000 inputs
performed 96 times faster (just over
3 min) than the single-stage version
(288 min).

Prediction error also decreased as
more data sources became available
(the number of inputs for A < B < C

< D). This highlights two important
aspects of our modular approach:

•	 Flexibility of input types. Dif-
ferent users can provide a lot of
data or a little data from various
sources and still generate the
same output through model
generation.

•	 Adaptation to changing or miss-
ing input data. The remaining
sources can still provide sig-
nificant accuracy, although the
change in error will be propor-
tional to the correlation between
the missing input and the output.

Unlike the single-stage application,

6

5

4

3

2

1

0

Time

No
. o

f u
se

s

0:
00

0:
45

1:
30

2:
15

3:
00

3:
45

4:
30

5:
15

6:
00

6:
45

7:
30

8:
15

9:
00

9:
45

10
:3

0

11
:1

5

12
:0

0

12
:4

5

13
:3

0

14
:1

5

15
:0

0

15
:4

5

16
:3

0

17
:1

5

18
:0

0

18
:4

5

19
:3

0

20
:1

5

21
:0

0

21
:4

5

22
:3

0

23
:1

5

FIGURE 4. The aggregated instances of washing-machine use on Mondays, illustrating three clusters of varying flexibility.

TA
B

L
E

 1 The four house types retrieved for the case study, with their components.

House type
Percentage of
neighborhood

Flexible
appliances

Inflexible
appliances

Additional
room-specific

appliances
Electric
vehicles

Water–
consuming
appliances Water flow

A 25 Yes Yes No No Yes No

B 25 Yes Yes Yes No Yes No

C 25 Yes Yes No No Yes Yes

D 25 Yes Yes Yes Yes Yes Yes

8	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING FOR THE INTERNET OF THINGS

in which a missing input affects over-
all system accuracy, our approach
limits the primary accuracy loss to
the context engines that directly or
indirectly use the missing input.

Scalability. We evaluated our appli-
cation’s latency as the number of
computational nodes and inputs
grew. Figure 5a illustrates the scal-
ability on a log–log plot. To inves-
tigate a viable implementation of
our approach, we maintained a ra-
tio of 10 inputs per context engine.
This allowed a balanced modular
multiple-input, single-output imple-
mentation. It also more accurately
represented the distribution of sen-
sors and computation from the
lower levels (aggregating data in a
house) to the upper levels (aggregat-
ing a street or neighborhood in a

distributor or substation) of the real
smart-grid hierarchy.

Both applications initially exhib-
ited similar latency when limited to
the same number of nodes. How-
ever, our approach distributed the
processing to more nodes as they be-
came available, demonstrating linear
growth with the number of inputs as
long as enough nodes were available.
When no more nodes were available,
a subset of computation had to be se-
rialized. The single-stage approach,
without this benefit, scaled exponen-
tially with the number of inputs.

We then investigated how com-
munication scaled in the two ap-
proaches in terms of the amount of
training data required—data that
had to be accrued before the context
engines could generate output. Both
approaches required O(nα) training

samples per context engine, but the
single-stage approach grew expo-
nentially with the number of inputs.
Because our approach limited n and
instead grew the number of con-
text engines and the hierarchy, the
required amount of training data
scaled linearly. The single-stage ap-
proach had a single O(n3) context
engine; as n increased, the required
amount of training data grew expo-
nentially with n (see Figure 5b).

O ur ongoing and future re-
search involves expanding
the context engine and im-

proving its applicability. Our initial
context engine results already dem-
onstrate a significant improvement
in predicting residential energy usage
and flexibility. However, although
we learn on all available inputs, we
don’t necessarily limit ourselves to
only the best (most correlated) in-
puts. Preliminary correlation analy-
sis has already shown the ability to
mitigate accuracy losses by eliminat-
ing only the least significant inputs.
Furthermore, limiting the number
of inputs can improve each context
engine’s latency. Formalizing cor-
relation analysis and automatically
selecting the most appropriate inputs
from a pool of available sources are
useful for context-aware applica-
tions operating in an environment
of changing data. This approach can
improve efficiency as well as replace
or update the existing algorithm as
more accurate or reliable sources en-
ter or leave the system.

Similarly, the context engine is
currently employed with a number
of machine-learning algorithms.
Some of these algorithms are better
suited than the others for a partic-
ular application, and they all incur
costs in computational overhead,

(b)
140120100806040200

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0

Total no. of inputs

No
. o

f s
am

pl
es

 tr
an

sm
itt

ed

(a)
1 10 100 1,000 10,000

10,000

1,000

100

10

1

0.1

Total no. of inputs

Co
m

pu
ta

tio
na

l l
at

en
cy

 (s
) 1 node

10 nodes
100 nodes
1K nodes
10K nodes
Single-stage
approach

Single-stage approach

Context engine

FIGURE 5. Evaluating scalability. (a) The scalability of the single-stage approach and

our modular approach as the number of computational nodes and inputs grew. (b) The

two approaches’ communication overhead as the number of inputs grew.

	 JANUARY/FEBRUARY 2017 | IEEE SOFTWARE� 9

accuracy, and latency. This can be
leveraged to define a multi-optimiza-
tion problem for context-aware com-
puting, trading off computational

complexity, latency, and accuracy.
The ability to quantify these three
characteristics and, more impor-
tant, optimize for each is crucial to

the real-life context-aware applica-
tions in which context engines are
used: smart spaces, grid automa-
tion, and the IoT. The result is a

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JAGANNATHAN VENKATESH is a

XXXXX at Google. His research interests

are energy efficiency, automation, valida-

tion of renewable-energy systems and

smart grids, and power- and context-

aware computing in embedded and mobile

systems. Venkatesh received a PhD from

the Computer Science and Engineering

Department at the University of California,

San Diego. Contact him at jvenkate@eng.

ucsd.edu.

ALPER S. AKYÜREK is a PhD candidate

in electrical and computer engineering at

the University of California, San Diego. His

research interest is the control and opti-

mization of energy efficiency in the smart

grid. Akyürek received an MS in electri-

cal and electronics engineering from the

Middle East Technical University. Contact

him at aakyurek@eng.ucsd.edu.

BARIŞ AKŞANLI is an assistant professor

in San Diego State University’s Electri-

cal and Computer Engineering Depart-

ment. His research interests include

energy-efficient cyber-physical systems,

human-behavior modeling for the Internet

of Things, and big data for energy-efficient

large-scale systems. Aks̨anlı received

a PhD in computer science from the

University of California, San Diego. He has

won an IDEA (Internet2 Driving Exemplary

Applications) award and a Spontaneous

Recognition award from Intel. Contact him

at baksanli@sdsu.edu.

TAJANA Š. ROSING is a professor

of computer science, a holder of the

Fratamico Endowed Chair, and a director

of the System Energy Efficiency Lab at the

University of California, San Diego. Her

research interests are energy-efficient

computing and embedded and distributed

systems. Rosing received a PhD in electri-

cal engineering from Stanford University.

Contact her at tajana@eng.ucsd.edu.

CHRISTINE S. CHAN is a PhD student in

the Electrical and Computer Engineering

Department at the University of California,

San Diego (UCSD). Her main research in-

terest is in optimizing energy-efficient sys-

tems according to both the human context

and machine context. Chan received an

MS in computer engineering from UCSD.

Contact her at csc019@eng.ucsd.edu.

10	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: SOFTWARE ENGINEERING FOR THE INTERNET OF THINGS

functional unit that can optimize
for the most correlated data, train
using the best available machine-
learning technique, and generate the
outputs required, as well as adapt to
environment- and user-imposed per-
formance constraints.

References
1.	C. Perera et al., “Context Aware

Computing for the Internet of

Things: A Survey,” IEEE Communi-

cations Surveys & Tutorials, vol. 16,

no. 1, 2013, pp. 414–454.

2.	M. Friedewald and O. Raabe, “Ubiq-

uitous Computing: An Overview

of Technology Impacts,” Telemat-

ics and Informatics, vol. 28, no. 2,

2011, pp. 55–65.

3.	J. Hammer and T. Yan, “Poster: A

Virtual Sensing Framework for Mobile

Phones,” Proc. 12th Ann. Int’l Conf.

Mobile Systems, Applications, and

Services (MobiSys 14), 2014, p. 371.

4.	J. Venkatesh et al., “A Modular

Approach to Context-Aware IoT

Applications,” Proc. 1st Int’l Conf.

Internet-of-Things Design and

Implementation (IoTDI 16), 2016,

pp. 235–240.

5.	K. Lee et al., “AMC: Verifying User

Interface Properties for Vehicular

Applications,” Proc. 11th Ann. Int’l

Conf. Mobile Systems, Applications,

and Services (MobiSys 13), 2013,

pp. 1–12.

6.	H. Chen, T. Finin, and A. Joshi,

“An Ontology for Context-Aware

Pervasive Environments,” Knowledge

Eng. Rev., vol. 18, no. 3, 2004, pp.

197–207.

7.	B.O. Akyürek et al., “TESLA: Taylor

Expanded Solar Analog Forecasting,”

Proc. 2014 IEEE Int’l Conf. Smart

Grid Communications (SmartGrid-

Comm 14), 2014, pp. 127–132.

8.	J. Gubbi et al., “Internet of Things

(IoT): A Vision, Architectural Ele-

ments, and Future Directions,” Fu-

ture Generation Computer Systems,

vol. 29, no. 7, 2013, pp. 1645–1660.

9.	P. Jogalekar and M. Woodside,

“Evaluating the Scalability of Distrib-

uted Systems,” IEEE Trans. Parallel

and Distributed Systems, vol. 11, no.

6, 2000, pp. 589–603.

10.	D. Uckelmann, M. Harrison, and F.

Michahelles, “An Architectural Ap-

proach toward the Future Internet of

Things,” Architecting the Internet of

Things, Springer, 2011, pp. 1–24.

11.	B. Akşanlı, A.S. Akyürek, and T.Š.

Rosing, “User Behavior Modeling

for Estimating Residential Energy

Consumption,” Smart City 360°,
Springer, 2015, pp. 348–361.

12.	J. Venkatesh et al., “HomeSim: Com-

prehensive, Smart, Residential Simu-

lation and Scheduling,” Proc. 2013

Int’l Green Computing Conf. (IGCC

13), 2013, pp. 1–8.

13.	N. Banerjee, S. Rollins, and K. Mo-

ran, “Automating Energy Manage-

ment in Green Homes,” Proc. 2nd

ACM SIGCOMM Workshop Home

Networks (HomeNets 11), 2011, pp.

19–24.

14.	T. Jamasb and M.G. Pollitt, The Fu-

ture of Electricity Demand: Custom-

ers, Citizens and Loads, Cambridge

Univ. Press, 2011.

Take the CS Library
wherever you go!

IEEE Computer Society magazines and Transactions are now
available to subscribers in the portable ePub format.

Just download the articles from the IEEE Computer Society Digital
Library, and you can read them on any device that supports ePub. For
more information, including a list of compatible devices, visit

www.computer.org/epub

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

