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Abstract— With the integration of renewable energy sources 
and large-scale smart buildings, the electricity grid becomes 
more prone to instabilities due to unexpected fluctuations in 
energy consumption. Data centers are a type of smart building 
because of their innate automation and controllable load. Load 
controlling in data centers has been studied extensively with 
scheduling/migration, peak power shaving, load shifting, etc. 
However, previous studies have not considered how changes in 
data center power consumption may impact the stability of the 
electric grid. This paper first shows that well-known power 
management mechanisms in data centers may lead to voltage 
instability in the grid. We propose a new method that considers 
both workload performance constraints and minimizes the 
instability-causing effects on the grid. Our simulation studies 
show that our policy can preserve the grid stability 97% of the 
time and reduces the maximum instability observed by 27%, 
while effectively managing the workload performance. 

I. INTRODUCTION 
With the increasing penetration of renewable energy 

sources and the number of large-scale buildings, it has become 
more difficult for the electric grid to preserve its internal 
dynamics. They pose might severe problems especially for 
smaller circuits, such as microgrids, that might have to keep 
supply and demand in balance without the help of utilities (e.g. 
islanding). One such problem is the voltage instability due to 
large local power consumption. Even though the supply-
demand balance is maintained (which maintains frequency 
stability), high consumption values may still cause local 
voltage deviations. The grid1 (microgrid in our case) has to 
address these voltage deviations, which may harm the grid 
stability and disrupt normal operation [1]. Large buildings can 
be very hazardous in this context due to their significant and 
possibly oscillating power demands. Although they are closely 
monitored for power prediction and rely on smarter power 
management, they are optimized for building energy savings 
and not for cooperation with the grid. This makes it 
increasingly difficult to anticipate the impact of buildings on 
microgrid stability. As such, it is essential to have a closed loop 
system where the buildings and the grid have constant 
communication, with feedback to each other. 

Data centers are an important type of large-scale buildings, 
with their already significant and still increasing power 
demands, up to 100MW per individual site [2]. Data center 
energy consumption accounts for 2-3% of overall consumption  
in the US [3]. Recently, smaller data centers (known as micro 
data centers) have also become more common as a solution for 
the scaling problems of big data centers and their enormous 

traffic requirements [4]. However, their energy consumption 
can still be relatively large compared to the other buildings in 
the same area. To address the energy problem of data centers, 
researchers have proposed many power management 
mechanisms, including renewable energy integration [5] [6], 
peak power shaving [7] [8] [9], energy efficient job scheduling 
including server consolidation [10] [11], load shifting [12], etc. 
These mechanisms work well when increasing the energy 
efficiency of a single or a set of data centers, but they may also 
increase the unpredictability of the power profile of a data 
center; hence resulting in unexpected instabilities in the grid. 
Furthermore, these mechanisms can have a deteriorating 
impact on the quality of service of the running applications, 
affecting the service guarantees, such as service level 
agreements (SLAs) that a data center must fulfill. Although 
previous studies have well investigated these power 
mechanisms individually, they do not consider how a data 
center may affect the grid and its neighbors. In addition to 
these mechanisms, researchers have also investigated how data 
centers can help the grid by providing ancillary services, such 
as regulation [13] [14] [15] and demand response [16] [17] 
[18]. The ancillary service participation of data centers 
analyzes how data centers can be helpful by providing 
flexibility to the grid, but it does not look into how data centers 
may create instability problems on the grid. 

In this paper, we model a realistic microgrid circuit that a 
smaller data center can reside in. We take this circuit as a 
subset of one of the openly released EPRI test circuits and use 
it to model a neighborhood with a small data center. Such data 
center deployments will be more common with the increasing 
Internet of Things (IoT) trend. This trend requires distributed 
infrastructure to handle the computation and communication in 
a faster way, leading to more local data center deployments 
closer to the original data sources [19]. Micro data centers can 
collect the local data (from sensors, smart meters, etc.), store it, 
apply any preprocessing required and then send it  to the cloud. 

Although these data centers are small, they can still cause 
problems to the microgrid. Thus, we first analyze how existing 
power management mechanisms perform in terms of grid 
stability, evaluated as a function of voltage deviation. These 
mechanisms, in addition to their performance overheads, may 
lead to unacceptable voltage deviation values up to 75% of the 
time, negatively affecting the other buildings in the circuit, as 
well as the quality of the whole microgrid. We propose a new 
method that finds the best mixture among peak power shaving, 
server consolidation and load shifting. It both minimizes the 
instability by carefully adjusting the power consumption and 
1 Grid and microgrid are used interchangeably through the rest of the paper. This work is supported in part by Google and Microsoft. 

                             



considers the workload performance constraints by selecting 
the right mixture of the above mechanisms. To the best of our 
knowledge, our work is the first analyzing data centers from 
the grid’s point of view and their instability-causing actions. 
We can preserve grid stability 97% of the time and reduce 
maximum instability observed by 27%. We meet the workload 
performance constraints effectively, incurring no more than 
10% performance overhead for batch jobs and completing the 
service jobs within 20% of their target deadlines.  

II. RELATED WORK 
This section first outlines the data center power 

management mechanisms and then shows the existing studies 
on data center participation in ancillary markets. 

A. Data Center Power Management Mechanisms 
Data center power management mechanisms can be 

classified as server or data center level. The former includes 
DVFS-based methods [20] [21], virtual machine migration [22] 
[23] and consolidation [11] [10]. The latter consists of higher 
level scheduling solutions such as load shifting [12], renewable 
energy integration [6] [5] and peak power shaving [9] [8] [24]. 

DVFS-based power management controls server power by 
adjusting the CPU voltage/frequency. It is an effective power 
cap – a last resort to decrease the total consumption. It slows 
down the CPU, thus often results in serious performance 
degradation. Also, it is difficult to coordinate this local 
controller across thousands of servers. Virtual machine (VM) 
migration is a more high-level solution, where the controller 
moves a specific VM from its original host to another server. 
The reasons for this can be collecting VMs in fewer machines 
and shutting down the rest (server consolidation) or achieving 
VM heterogeneity across machines to increase resource 
utilization and energy efficiency [10]. This method also leads 
to some performance issues due to the delay in moving a VM. 

Load shifting is another well-known high-level solution for 
data center power management. The main idea is to reschedule 
the starting time of some jobs so that the total power demand 
matches renewable energy generation [23], cheaper electricity 
price [25], etc. It is an effective solution only for jobs that are 
chosen very carefully to avoid performance penalties. While 
renewable energy combats the increasing negative implications 
of fossil-based brown energy, much effort is required to 
navigate their unpredictability and maximize the amount of 
green energy successfully integrated into the system [6]. Since 
utility bills are calculated based on the maximum power 
demand of the data center over a billing period, e.g. a month, 
peak power shaving can effectively reduce utility charges. 
Examples include battery-based [9] [8], DVFS-based [7] and 
VM-migration based solutions. DVFS-based solutions may 
lead to costly performance overheads, while solutions based on 
overprovisioned batteries do not interfere with job scheduling 
decisions. Battery configurations must be carefully designed so 
that installation and maintenance costs do not neutralize the 
savings of peak power shaving [8] [9]. These methods increase 
the power efficiency of data centers but they ignore the effects 
of data centers on the grid. They can cause unexpected and 
significant oscillations in the data center demand profile. 

B. Data Center – Grid Interactions 
Researchers have started to study the relationship between 

data centers and the electric grid, mainly in the form of 
ancillary services, and estimated the amount of savings data 
centers can obtain. These include regulation services [13] [14] 
[15], demand response [18], voluntary load reduction [17] and 
spinning and non-spinning reserves [15]. Some studies also 
consider how buildings should negotiate price with the grid and 
adjust their operations based on a price-related reward [26]. 

Out of the ancillary services, participation in regulation 
markets is most studied due to its higher return. This higher 
return requires fast responses from the data centers’ end, which 
may be accomplished with server-level DVFS [14]. The data 
center first chooses which market it participates in, i.e. either 
hour or day ahead. It then reports the regulation capacity it can 
provide to the grid. The grid sends requests for either an 
increase or a decrease in consumption within the previously 
agreed capacity. The data center then fulfills these requests 
with DVFS. Aksanli et al. align battery charge/discharge cycles 
to create the power flexibility to participate in regulation 
services [13]. Maasoumy et al. use model predictive control for 
building HVAC systems to create this flexibility [26].  

Another well-known service that data centers can provide is 
demand response (DR). Wang et al. analyze data center 
participation in DR with clever job scheduling [16]. Another 
work surveys the recent studies showing how data centers can 
provide DR, identifying the potential problems [18]. Aikema et 
al. study different ancillary services and show which one is 
more profitable given the workload profile [15]. They consider 
regulation services, spinning and non-spinning reserves, 
voluntary load reduction and emergency DR. They conclude 
that the regulation is the most profitable service for data center 
participation in ancillary services. They use different solutions 
such as load shifting, DVFS, and job rescheduling to create the 
necessary changes in data center power demand. 

These studies form a good basis for understanding the 
relationship between data centers and the grid. They show how 
data centers can make extra profits by participating in grid 
services. However, they do not model data centers in smaller 
circuits where they can have higher impacts on the grid 
stability and they do not analyze how to preserve the stability 
so that the system is not threatened. In this paper, we first 
evaluate the grid instability caused by data center actions. 
Then, we show a new mechanism that addresses the instability 
problems and minimize their negative effects, while preserving 
the data center profits without affecting job performance. 

III. DATA CENTERS IN THE GRID 
This section first shows how we model a data center in a 

microgrid circuit and then demonstrates that existing power 
management mechanisms can lead to both significant 
performance degradations and serious grid instability. 

A. Grid Circuit and Simulation 
We model both a data center and the microgrid in which it 

resides. We use a subset of one of the EPRI’s openly released 
test circuits of a small town with 1379 customers [27], which 
consists of multiple residential and commercial buildings. Our 



circuit includes a single substation transformer with 9 local 
transformers. We modify the circuit by replacing one of the 
buildings with a data center, scaled to match a power demand 
typical of micro data centers containing 500 servers. Micro 
data centers are designed to provide computing capabilities to 
companies that do not need a large-scale data center [4]. These 
systems are becoming more common to satisfy the local 
computation and communication demand required by new IoT 
applications and expected to have $4.40 billion market by 2019 
[28]. Figure 1 shows the circuit structure we use for our 
modeling and experiments for the rest of the paper. We also 
change the location of the data center to analyze the effect of 
distance to the substation to the voltage deviation. In our 
experiments, we place the data center to locations H1_1, H5_3 
and H9_2. The first one is the physically closest to and the last 
one is the furthest away from the substation transformer. 

 
Figure 1. Circuit model based on the EPRI test circuit 

 
Figure 2. Closed-loop control operation flowchart 

We use a grid simulator to study and quantify grid 
dynamics. It allows connections from external clients as the 
other buildings in the grid. We handle time synchronization 
among the clients internally. We expect a power consumption 
value from each connected client in every interval. Then we 
use OpenDSS [29], to solve the power flow equations and 
quantify the grid stability by calculating the voltage deviation 

stemming from changes in building power consumption, and 
compute a stability index. This index is fed back to the client to 
adjust its consumption accordingly, creating a closed control 
loop. Figure 2 shows the flowchart outlining the order of these 
operations. In our study, one of the clients is a data center, 
where the rest of the clients are other buildings, such as 
commercial office buildings and/or residential buildings. This 
closed-loop system, where the buildings and the grid both send 
feedback to each other, helps the utility preserve grid stability. 

B. Workload Performance vs. Grid Instability 
For different mechanisms we first show the stability effects 

of nominal (without any mechanism) consumption, then 
include the results for the other methods. The metrics we use to 
quantify the grid stability are: 1) the percentage of the number 
of intervals where the grid stability is threatened, 2) the 
maximum voltage deviation caused by the data center. 
American National Standard for Electric Power Systems and 
Equipment requires utilities to have operation voltage between 
90% and 105% of the nominal value [30]. We use the lower 
limit, 10% deviation, as the stability threshold. 

 
Figure 3. Data center load composition 

We obtain the nominal data center power profile based on 
workloads and traces from real data center applications. We 
use Google Search, Orkut [31] and Facebook MapReduce 
traces taken from [32]. We compute the data center power as 
the aggregated server power values, where power consumption 
per server is calculated according to utilization [20] [33]. The 
mixture of time-sensitive service jobs (Search and Orkut) and 
throughput-oriented batch jobs (MapReduce) form a realistic 
profile for data center applications [34]. Figure 3 shows load 
ratio of these three types of workloads in a week. Scheduling 
based solutions, such as load shifting or VM migration; largely 
depend on these observable diurnal workload patterns.  
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Figure 4. Power profiles for different mechanisms. Peak power shaving (top). VM migration and consolidation (middle). Load shifting (bottom). 



We apply three mechanisms introduced by previous studies 
to create different power profiles. Load shifting is performed to 
align consumption with the cheaper electricity price or it shifts 
workloads to intervals with less demand [12]. With migration 
and consolidation [10] [35], VMs are put into a subset of all 
servers and the rest are turned off. Peak power shaving is 
performed with multiple batteries placed together. Their output 
is connected to the mains with a grid-tie inverter. We choose 
lithium iron phosphate (LFP) batteries over lead acid (LA) 
ones as they are more cost effective and better at peak power 
shaving [9]. The battery charge/discharge cycles are adjusted to 
meet a predefined peak threshold. 

Figure 4 has three graphs showing the power profile of 
each controller class. Each graph has the power demand as the 
y-axis and the time as the x-axis. The leftmost graph compares 
the nominal power with five different peak shaving methods. 
Each has a different threshold, and the peak shaving is handled 
with batteries. The batteries discharge when the nominal power 
is over the threshold and recharge when it is lower. This 
explains why the lowest power is also high. The power demand 
is adjusted around the threshold, achieving an unexpected 
profile. The middle graph shows three versions of VM 
consolidation and how they compare to the nominal case. The 
first one moves batch jobs together and keeps the rest ready for 
service jobs. The second one combines batch and service jobs 
separately and puts the rest into sleep. The last one mixes batch 
and services jobs together. We see that the new power profiles 
achieve consistently lower values than the nominal case. This 
is due to the servers shut down. However, this method affects 
application performance negatively because of resource 
contention and VM migration overhead, up to 20% overhead to 
batch jobs and 10x slower response times for service jobs. The 
last graph shows two load shifting methods compared to the 
base. The first one shifts the batch workloads to the intervals 
with fewer active service jobs. The second one moves the batch 

workloads to intervals with cheaper electricity price. The 
second version assumes that the electricity price is based on a 
time-of-use (TOU) scheme, with the cheapest prices occurring 
daily between 10PM and 6AM, using SDGE’s TOU pricing 
numbers [36]. The service jobs are not shifted due to their tight 
delay requirements. The last graph shows that load shifting can 
create new peaks that need to be considered by the utilities to 
avoid any instability events and/or supply/demand mismatches.   

Table I outlines the tradeoff between savings (energy cost 
savings and peak power reduction) and performance (extra 
infrastructure and overhead) for each mechanism. We compute 
savings using SDGE’s TOU pricing and compare the peak 
power shaving percentage against the absolute peak value. We 
estimate the effects of consolidation for different types of jobs 
using the analysis provided in [6], where the authors quantify 
the quality of service (QoS) degradation for service jobs and 
performance overhead for batch jobs when multiple VMs are 
consolidated on a single server. Service job QoS gets better 
with smaller numbers and is based on 90th percentile response 
time over their target deadlines and batch job performance is 
shown as the normalized job throughput rate as in [6]. Table I 
gives average and maximum performance degradation values. 

Battery-based peak power shaving methods do not interfere 
with job performance, but they require large size battery 
deployments, whose capacity depends on the peak power 
shaving goal. The savings can be significant, up to 22%, but 
the fact that batteries are expensive devices with lifetime 
constrains makes it necessary to have a careful analysis. 
Consolidation methods cannot reduce the overall peak power 
but decrease the energy cost by up to 26% without additional 
infrastructure. Their effects on job performance can be quite 
significant, up to 20% performance overhead to batch jobs and 
more than 10x slower response time for service jobs. Load 
shifting, in contrast, does not require additional infrastructure 

TABLE I. PERFORMANCE IMPLICATIONS OF DIFFERENT POWER MANAGEMENT MECHANISMS 

Mechanism Extra Infrastructure (LFP 
Battery Capacity) 

Service Job QoS 
(avg. – max) 

Batch Job Performance 
Overhead (avg.-max %) 

Energy Cost 
Savings (%) 

Peak Power 
Shaving (%) 

Peak power v1 240 kWh 

No effect 0 

21.9 
Peak power v2 192 kWh 21.4 
Peak power v3 144 kWh 20.5 
Peak power v4 96 kWh 18.2 
Peak power v5 48 kWh 15.3 

Consolidation v1 

n/a 

0.047 – 0.047 14.5 – 19 4.7 0 
Consolidation v2 0.26 – 0.93 15 – 19 15.9 0 
Consolidation v3 0.52 – 0.93 16.7 – 19 26.7 0 
Load shifting v1 0.05 – 0.1 7.8 – 17 -0.2 16.2 
Load shifting v2 0.09 – 0.93 11.5 – 19 4 0 

TABLE II. STABILITY STATISTICS OF DIFFERENT POWER MANAGEMENT MECHANISMS 

Mechanism 
DC location = H1_1 DC location = H5_3 DC location = H9_2 

Max 
Dev. 

Avg. 
Dev. 

#Unstable 
Points 

%Unstable 
Points 

Max 
Dev. 

Avg. 
Dev. 

#Unstable 
Points 

%Unstable 
Points 

Max 
Dev. 

Avg. 
Dev. 

#Unstable 
Points 

%Unstable 
Points 

Nominal 15.8 11.1 243 72.3 15.9 11.1 257 76.5 15.8 11.1 248 73.8 
Peak power v1 11.1 10.8 319 94.9 11.2 10.9 322 95.8 10.9 10.7 320 95.2 
Peak power v2 11.2 10.8 311 92.6 11.4 10.9 317 94.3 11 10.8 312 92.8 
Peak power v3 11.3 10.8 290 86.3 11.5 11 298 88.8 11.2 10.8 292 86.9 
Peak power v4 11.9 10.9 257 76.5 12 11 269 80.1 11.7 10.9 260 77.4 
Peak power v5 12.5 11 245 72.9 12.6 11.1 258 76.8 12.3 10.9 249 74.1 

Consolidation v1 15.8 10.2 176 52.4 15.9 10.3 193 57.4 15.8 10.2 181 53.9 
Consolidation v2 16.5 8.4 101 30.1 16.7 8.5 111 33 16.5 8.4 104 30.1 
Consolidation v3 15.8 6.6 39 11.6 15.9 6.7 40 11.9 15.8 6.6 39 11.6 
Load shifting v1 12.2 11 336 100 12.3 11.1 336 100 12.1 11 336 100 
Load shifting v2 15.8 11.1 151 44.9 16 11.2 168 50 15.8 11.1 147 43.7 

 



and does not have as high negative impacts on job performance 
as consolidation methods, while achieving limited benefits. 

Since each method has its own pros and cons, we are led to 
consider a hybrid solution. We now introduce another tradeoff 
dimension: grid stability. We evaluate the effect of each profile 
separately using a grid simulator. We place the data center in 3 
locations in the circuit, showing the effects of placement on the 
grid stability. Table II shows the stability statistics with 
different profiles over a week. The existing solutions do not 
consider these effects. These statistics include the average and 
maximum voltage deviation, the number of unstable intervals, 
i.e. the intervals with deviation higher than the threshold (10%) 
and the percentage of unstable intervals over the simulation 
duration. The nominal demand already results in significant 
grid instability, regardless of the location. The peak shaving 
methods decrease the gap between average and maximum 
deviation numbers, but still lead to instability more than 70% 
of the time. In contrast, some methods, e.g. consolidation v2 
and v3, can reduce the number of unstable points with severe 
performance overhead. Also, as the data center gets further 
away from the substation and if it shares the local transformer 
with more buildings, the instability increases. This analysis 
shows the necessity of a mechanism that considers both 
performance and grid instability caused by the data center.  

IV. STABILITY PRESERVING POWER MANAGEMENT 
This section presents our solution to the instability problem. 

Our framework consists of two different components: 1) the 
data center, which aims to minimize the performance overhead 
from various power management mechanisms and the penalty 
issued by the utility to preserve the grid stability, 2) the utility, 
whose goal is to encourage its customers by imposing a penalty 
on their power consumption causing instability. 

A. Data Center Point of View: Problem Formulation 
We divide the time horizon into equal intervals, t. The data 

center receives both service (response time critical) and batch 
job (flexible deadline) requests in the beginning of each time 
interval (30 min for our experiments). It also communicates 
with the utility and receives a power threshold. Any violation 
of that power threshold will incur a price penalty. To achieve 
this threshold, the data center can use a combination of power 
management mechanisms, outlined in section III.B. 

Because multiple neighbors could be affected by instability, 
it is difficult to evaluate future intervals even though we can 
predict the data center power demand. Therefore, we focus on 
a single time step and formulate a problem to make the best 
decision to avoid penalties from the utility and performance 
degradations. In interval t, we represent incoming service job 
load ratio as 𝑠! and batch job ratio as 𝑏!, with total load ratio: 

𝑙𝑜𝑎𝑑! = 𝑠! + 𝑏! + 𝑠ℎ!!!        (1) 

where 𝑠ℎ!!! is the load ratio shifted from the previous interval 
(where 𝑠! = 0, i.e. no jobs shifted to the first interval) to the 
current one. We divide servers into two sets to process service 
and batch jobs separately, using the results of [6]. The ratios of 
servers processing service and batch jobs are 𝑠! and 𝑏!, where 
𝑠! + 𝑏! = 1. The data center chooses the consolidation ratios 
for service, 𝑐𝑜𝑛𝑆!, and batch jobs, 𝑐𝑜𝑛𝐵! (between 0 and 1), 

along with the shifted batch job load ratio to the next interval, 
𝑠ℎ!. These values show what percentage of the workloads of 
each type is consolidated. To avoid response time violations, 
we do not shift service jobs. We impose an upper limit on 
𝑠ℎ!  to avoid indefinite batch job postponement, 𝑙𝑖𝑚𝑆ℎ𝑖𝑓𝑡𝐵𝑎𝑡𝑐ℎ. 
Since batch jobs do not have tight deadlines, in the beginning 
of an interval, the data center can always start processing the 
batch jobs from an earlier interval. We assume that the shifted 
batch workloads have higher priority than the ones newly 
arriving so that they can be executed first. If the power 
manager decides to shift batch workloads again, they are 
selected among the ones newly arriving. Equation 2 shows the 
limits for these decision variables.  

!!!!!!!"#  (!"#$!!"#$%#&!,!!!!!!!!)
!!  !"#!!!!
!!!"#!!!!

      (2) 

We then calculate performance penalties for consolidating 
service and batch jobs. The service job penalty is computed 
with QoS ratio and batch job penalty in terms of job throughput 
rate. We model the penalty based on current load ratios, 𝑠! and 
𝑏! with consolidated load ratios, 𝑐𝑜𝑛𝑆! and 𝑐𝑜𝑛𝐵!:  

𝑝𝑒𝑛𝐶𝑜𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒! = 𝑓!(𝑙𝑖𝑆!)
𝑝𝑒𝑛𝐶𝑜𝑛𝐵𝑎𝑡𝑐ℎ! =   𝑓!(𝑙𝑖𝐵!)

        (3) 

where 𝑓! and 𝑓! reflect the penalty relation between current and 
consolidated load ratios. We model the relation based on the 
work in Aksanli et al. [6] where multiple VMs are co-located 
on a single machine. The performance of service and batch 
jobs is measured in terms of QoS ratio (observed response time 
over the target deadline) and percentage decrease in job 
throughput rate, respectively. Figure 5 shows how we model 
these functions for both service (i) and batch jobs (ii). The x-
axes represent the load increase rate due to consolidation. Y-
axes denote service job QoS in (i) and percentage decrease in 
job throughput rate in (ii). The solid lines show measurement 
points and the dashed lines present their exponential and/or 
logarithmic interpolations. We compute the load increase rate 
for each type of job, 𝑙𝑖𝑆! and 𝑙𝑖𝐵!, using consolidation and load 
ratios, in equations 4 and 5. The consolidated jobs end up in 
servers with full utilization and the remaining jobs stay in their 
previous hosts with the original utilization value.  

𝑙𝑖𝑆! =
!"#!!
!!

+ (1 − 𝑐𝑜𝑛𝑆!)    (4) 

𝑙𝑖𝐵! =
!"#!!

!!!!!!!!!!!!
+ (1 − 𝑐𝑜𝑛𝐵!)   (5) 

If the denominator is 0 in equation 5, we set 𝑙𝑖𝐵! equal to 1. 
This way, we make sure that the associated penalty; 𝑓! 𝑙𝑖𝐵!  is 
0. We impose limits, 𝑙𝑖𝑚𝐶𝑜𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒  and 𝑙𝑖𝑚𝐶𝑜𝑛𝐵𝑎𝑡𝑐ℎ , on 
these penalty values to avoid large overheads, which are set 
manually based on the results of the previous work [6]. This 
work limits the batch job performance hit to 10% and makes 

 
Figure 5. i) Service and ii) batch job overhead due to consolidation 



sure that service jobs complete before their target deadlines. 
The last power control is the battery-based power management, 
where the charged/discharged energy is denoted by 𝑏𝑎𝑡!: 

−𝑙𝑖𝑚𝐷𝑐ℎ ≤ 𝑏𝑎𝑡! ≤ 𝑙𝑖𝑚𝐶ℎ         (6) 

where 𝑙𝑖𝑚𝐷𝑐ℎ  and 𝑙𝑖𝑚𝐶ℎ  are maximum allowed battery 
discharge and charge energy in an interval respectively. If 
𝑏𝑎𝑡! > 0, the battery is charging and it is discharging when 
𝑏𝑎𝑡! < 0. The battery usage is also limited by its state-of-
charge (SoC), i.e. we cannot overcharge the battery or drain it 
further than its capacity. We calculate the SoC in interval t as: 

𝑆𝑜𝐶! = 𝑆𝑜𝐶!!! +
!"!!

!"!!""!"!!"#
        (7) 

where  𝑏𝑎𝑡!"# is the battery capacity and 𝑏𝑎𝑡!"" is the battery 
charging efficiency, which can be specified as: 

𝑏𝑎𝑡!"" =
𝛼 < 1, 𝑖𝑓  𝑏𝑎𝑡! < 0
1, 𝑖𝑓  𝑏𝑎𝑡! > 0          (8) 

where 𝛼 is a value between 0 and 1, denoting the discharging 
efficiency of the battery. Then the battery SoC is limited by: 

𝑙𝑜𝑤𝑆𝑜𝐶 ≤ 𝑆𝑜𝐶! ≤ 1     (9) 

Equation 9 makes use of a lower bound, between 0 and 1, 
on battery SoC, 𝑙𝑜𝑤𝑆𝑜𝐶, to better control the battery lifetime. 
We assume that the batteries are initially fully charged, i.e. 
𝑆𝑜𝐶! = 1.We also limit the number of discharging intervals to 
avoid battery overuse. We count the number of discharging 
intervals and limit it with average battery usage number, 
𝑎𝑣𝑔𝐵𝑎𝑡𝑈𝑠𝑎𝑔𝑒 that is computed as the expected discharging 
intervals over the battery lifetime:  

𝑏𝑎𝑡𝑈! =
𝑏𝑎𝑡𝑈!!! + 1, 𝑖𝑓  𝑏𝑎𝑡! < 0

𝑏𝑎𝑡𝑈!!!, 𝑒𝑙𝑠𝑒
 

!"#!!
!

≤ 𝑎𝑣𝑔𝐵𝑎𝑡𝑈𝑠𝑎𝑔𝑒   (10) 

We calculate the data center power in interval t,  𝑃!, using 
active/consolidated load ratios and the battery power. The total 
consumption has 5 parts: consolidated and unconsolidated 
server power consumption and the battery component: 

𝑃! = 𝐶𝑜𝑛!"# + 𝐶𝑜𝑛!"#$! + 𝑈𝑛𝑐𝑜𝑛!"# + 𝑈𝑛𝑐𝑜𝑛!"#$! + 𝐵𝑎𝑡𝑡𝑒𝑟𝑦      (11) 

We use a linear, utilization based equation to compute the 
parts of equation 11. We adjust this using load ratios, with and 
without the consolidated parts, and add the battery component: 

    𝑃! = 𝑁 𝑐𝑜𝑛𝑆!𝑠! 𝑃! + 𝑃!  
      +  𝑁𝑠! 1 − 𝑐𝑜𝑛𝑆! (𝑃! + 𝑃!𝑠!/𝑠!)   
      +  𝑁 𝑐𝑜𝑛𝐵!(𝑏! + 𝑠ℎ!!! − 𝑠ℎ!) 𝑃! + 𝑃!  
      +𝑁𝑏! 1 − 𝑐𝑜𝑛𝐵! 𝑃! + 𝑃! 𝑏! + 𝑠ℎ!!! − 𝑠ℎ! /𝑏!   
    +  𝑏𝑎𝑡!                             (12) 

where 𝑁 is the number of servers, 𝑃! is the idle server power 
consumption and 𝑃! is its dynamic power range. Equation 12 
assumes that the consolidated jobs end up in servers with full 
utilization and the remaining jobs stay in their previous hosts 
with the original utilization value. Finally, we optimize the 
total consumption, 𝑃!, based on the utility threshold signal: 

min𝑃𝑒𝑛𝑎𝑙𝑡𝑦  (𝑃!) = |𝑃! − 𝑃!!|   (13) 

The objective function defines the penalty as the deviation 
of 𝑃! from 𝑃!!. This way, we 1) consider the cases where the 

utility wants the data center to increase its power demand, 2) 
avoid reducing the consumption further than necessary and 3) 
provide a motivation for batteries to recharge in some intervals. 
The optimization problem is summarized by (13) with 
constraints (1)-(10) and (12). The problem is not necessarily 
convex as the absolute value does not guarantee it. This means 
that a unique solution may not exist. The problem is 
polynomial time as the solution set is limited. It is possible to 
do a linear search to find the minimizing value(s if not unique). 
We solve the problem using MATLAB’s constrained nonlinear 
optimization toolbox [37]. 

B. Utility Power Threshold Signal 
We model the utility as the main entity responsible for 

maintaining the grid stability. It can access the power demand 
of all the buildings in the circuit and solves power flow 
equations by OpenDSS to compute the voltage deviation each 
building leads to. It then uses our grid simulator to find the 
feasible power value specifically for the data center. In 
practice, we can compute this value for each building in the 
circuit, but in this paper, we are only interested in data centers. 
Our grid simulator runs multiple iterations to find a feasible 
value, denoted by 𝑃!! previously. It represents the power value 
that the data center should adjust to avoid a potential instability 
event. This process is similar to the demand response programs 
utilities have [18]. Different than previous works, we explicitly 
compute the threshold value considering both the data center 
and other buildings on the grid. We characterize an instability 
event as the maximum voltage deviation being over the 
acceptable threshold. We use the same implementation details 
for the grid simulator as the authors describe in [1]. 

 
Figure 6. Data center – utility interaction in a time interval 

Figure 6 shows the relationship between the utility and the 
data center in an interval. The data center first computes its 
expected power demand based on incoming jobs and send this 
value to the utility. The utility uses this value, with power 
values from the other buildings as input to the grid simulator. 
The simulator calculates the power threshold value for the data 
center and the utility forwards this value to the data center. 
Then, the data center solves the optimization problem from the 
previous section with the power threshold and workload 
performance constraints. Solving the optimization problem 
determines the power management mechanisms used in the 
current interval. The same process repeats for the next interval. 

Our framework presents an extension to demand response 
(DR), formalizing the relation between utilities and the 
consumers (data center in our case). Previous studies almost 
completely focus on voluntary load reduction, where data 
centers decrease their consumption to receive a reward. In our 
system, the utilities explicitly penalize data centers for their 



instability causing behavior. On the data center side, we 
develop a unique power manager: selecting from different 
mechanisms to find the most effective tradeoff between 
performance overhead and the penalty imposed by the utility. 

V. EVALUATION 
This section first shows the experimental setup and inputs 

to evaluate our power management solution. We then present 
the results of our framework. It preserves the grid stability 97% 
of the time and reduces the maximum voltage deviation by 
27%. We achieve the effective tradeoff between performance 
and grid instability, which is missing in the existing solutions. 

A. Methodology 
Data Center Workload Mixture: We use the same 

workload mixture as introduced in section III.B. This mixture 
includes a year of publicly available traffic data of two Google 
products Orkut and Search, as reported in Google 
Transparency Report [31] to represent response time-critical 
service jobs. We use Facebook MapReduce traces as batch job 
representatives. produced from the weekly waveforms as 
reported in [32]. We limit the traces to one week for simplicity. 
The resulting mixture is shown in Figure 3. This figure shows 
the diurnal patterns jobs, aligning well with real-world 
applications. The max load ratio is around 90% while the 
average is 45%. 

TABLE III. EVALUATION PARAMETERS INPUT TO THE OPTIMIZATION  
Parameter Explanation Value 

𝑁 Number of servers 500 
𝑃!  Single server idle power (W) 175 
𝑃!  Single server active power (W) 175 
𝑠!  Ratio of servers allocated to service jobs 0.6 
𝑏!  Ratio of servers allocated to batch jobs 0.4 

𝑏𝑎𝑡!"# Total battery capacity (kWh) 150 
- Battery type LFP 

𝑙𝑖𝑚𝐶ℎ Battery charging energy limit (kWh) 15 
𝑙𝑖𝑚𝐷𝑐ℎ Battery discharging energy limit (kWh) 15 

𝑎𝑣𝑔𝐵𝑎𝑡𝑈𝑠𝑎𝑔𝑒 Battery discharge intervals ratio 0.5 
𝛼 Battery discharging efficiency 0.95 

𝑙𝑜𝑤𝑆𝑜𝐶 Lowest SoC allowed for batteries 
(1 – depth of discharge limit) 0.4 

𝑙𝑖𝑚𝐶𝑜𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒 Service job penalty limit, based on QoS 0.2 

𝑙𝑖𝑚𝐶𝑜𝑛𝐵𝑎𝑡𝑐ℎ Batch job penalty limit, based on % 
throughput decrease 10% 

𝑙𝑖𝑚𝑆ℎ𝑖𝑓𝑡𝐵𝑎𝑡𝑐ℎ Max batch load ratio that can be shifted 0.05 

Evaluation Parameters: We require several parameters to 
find the best decision to minimize the grid instability. They are 
either infrastructure related, such as server and battery 
properties, or performance related such as service and batch 
job penalty limits. Table III lists the parameters we use, along 
with their explanations and values. We model a micro data 
center with 500 servers to match the data center power demand 
to a common office building that can reside in the circuit in 
Figure 1. This size can have multiple containers, where each 
can take around 200 servers [9]. The server model we use is 
based on Sun Fire servers, with 175W idle and 350W peak 
power [8]. We include LFP batteries, as they are more cost 
efficient with longer lifetime and higher efficiency [9] [8]. We 
limit their depth of discharge to 60% as in previous studies [9] 
[8], i.e. setting 𝑙𝑜𝑤𝑆𝑜𝐶 to be 0.4. The total battery capacity is 
set to 150 kWh, the average capacity of five peak shaving 

scenario. We limit the average battery usage to 0.5, i.e. only 
half of the time batteries can discharge, allowing to recharge in 
the other half. The maximum allowed QoS ratio for service 
jobs is 0.2 whereas the maximum throughput decrease of batch 
jobs is set to 10%. We obtain these values as the lower bounds 
observed in preliminary results, as reported in Table I. 

Grid Simulation and Optimization: We place the data 
center in 3 different locations on the circuit shown in Figure 1. 
They range from closest to farthest away from the substation 
transformer. We use the power demand traces provided by 
EPRI along with the circuit diagram [27] to account for the 
other 24 buildings. An example subset of the consumption 
profiles from 5 buildings for a time of 1 week is shown in 
Figure 7. We input power demand traces of all 25 buildings to 
our grid simulator and run a separate simulation for each 
different data center placement. The data center reports its 
expected power demand to the grid simulator at the beginning 
of each interval and then the grid simulator provides the power 
threshold signal to the data center. Based on this threshold, we 
solve the optimization problem defined in section IV.A and 
adjust the data center power demand. The problem is solved 
using MATLAB’s constrained nonlinear optimization toolbox 
[37]. We find the solution for each time step individually. The 
process is computationally lightweight. In our experiments, the 
number of iterations to find the solution ranges between 3 and 
28, with the average of 17. 

 
Figure 7. Sample consumption profile for 5 buildings 

B. Results 

The upper half of Table IV includes performance statistics 
such as service job QoS and batch job overhead percentage, 
energy cost savings and peak power shaving percentage. The 
lower half has stability statistics such as maximum and average 
voltage deviation, number and percentage of unstable points. 

TABLE IV. PERFORMANCE OF OUR MECHANISM 
Performance Metrics H1_1 H5_3 H9_2 

Service Job QoS 
 (avg. – max) 0.08 – 0.18  0.08 – 0.2  0.08 – 0.2 

Batch Job Performance  
Overhead (avg. - max %) 2.6 – 10 2.8 – 10  2.7 – 10  

Energy Cost Savings (%) 6.2 6.9 6.1 
Peak Power Shaving (%) 18.8 18.4 18.5 

Max. Deviation 11.6 11.9 11.6 
Average Deviation 9.9 9.9 9.9 
#Unstable Points 12 16 12 

% Unstable Points 3.6 4.8 3.6 

Our method significantly reduces the number of instability 
events caused by the data center. The frequency of these events 
is as low as 3.6%. The threshold signal shows the maximum 
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data center power demand to have 10% instability. We track 
this signal with our framework closely and use most of the 
allocated power budget. Thus, our average deviation results are 
close to the limit, 9.9% for all three locations. Our maximum 
voltage deviation is less than all previous methods, 27% less 
than the case that does not use any power management solution 
(nominal). Our method works well in all three locations, i.e. 
the average deviation stays under 10%. For locations with 
higher deviation due to either a larger number of neighbors 
(H5_3) or longer distance to the substation transformer (H9_2), 
our method increases the workload performance overhead to 
meet the voltage deviation requirements since the battery 
capacity is the same. Though, this increase is minimal, around 
10% for service jobs and 7% for batch jobs. Here, we show 
that not only the power mechanism but also data center 
placement affects grid stability, and by proxy, the performance 
overhead to meet the voltage deviation requirements. 

The maximum QoS ratio observed is 0.2 and the largest 
batch job performance overhead is 10%. Although we hit the 
performance limits at some intervals, the average performance 
overheads are considerably less than the maximum values, 0.08 
for service job QoS ratio and 2.6% for batch job performance 
overhead. These average values are significantly smaller than 
the existing methods (Table I), up to 6.5x better for service 
jobs and 7x better for batch jobs. This is because we consider 
different characteristics of service vs. batch jobs during 
consolidation and aim to minimize the expected performance 
overhead due to such a process. An interesting observation is 
that even though we do not consider energy costs in our 
formulation, our method still achieves 6% energy cost savings. 
This is because our mechanism obtains a more flat power 
profile and this can benefit from time-of-use pricing. In 
contrast, the peak power shaving performance is worse than the 
original battery-based solutions. We are still within 90% of the 
peak power shaving solution with similar battery capacities.  

 
Figure 8. Power consumption vs. deviation for H1_1 

Figure 8 shows the data center power profile in location 
H1_1 with its voltage deviation results. We observe similar 
patterns for the other two locations and present only H1_1 for 
the sake of clarity. The first three series are the utility 
threshold, adjusted data center power demand and the battery 
power. They use the primary axis. The deviation values use the 
secondary axis with the long dashed line. We see that the 

power demand closely follows the utility threshold. Whenever 
we cannot guarantee the threshold, the voltage deviation goes 
above 10%. Although this maximum value is 11.6%, it is still 
27% smaller than the maximum deviation with no controller. 
In the unstable intervals, the battery capacity falls short and 
cannot discharge further to provide energy. Figure 9 shows 
workload performance for the same analysis. The upper graph 
shows service job QoS ratio and the lower one presents batch 
job performance overhead percentage. Overheads occur when 
the batteries fall short. To eliminate the few unstable points, the 
options are: 1) increasing the battery capacity, 2) increasing the 
battery DoD limit and 3) stretching the performance 
constraints. The first one increases the capital costs and the 
second one raises the operational costs due to more frequent 
battery replacements. The last one depends on the application 
type and how tight their performance requirements are. 

Figure 10 shows a tradeoff between the first and third 
options listed above. We change the battery capacity and find 
the new QoS and batch job performance limits to obtain the 
same instability statistics as the reference case. The reference 
case has 150 kWh battery capacity, 0.2 QoS limit and 10% 
batch job performance overhead limit. The primary and 
secondary axes show the service job QoS and batch job 
performance overhead percentage. The x-axis denotes the 
changing battery capacities. We have a 4-tuple for a given 
capacity value, max and average QoS ratios, max and average 
batch job performance overhead percentages. As the battery 
capacity drops, we need to be more flexible with the workload 
performance. Although the average values obtained do not 
change significantly, with half the battery size as the reference 
case, the max QoS ratio can be as worse as 2x and the max 
batch job performance overhead may increase by 50%. 

 
Figure 9. Service job QoS (upper) and batch job performance overhead 

percentage (lower) for H1_1 

We show that using a single power management method 
may not be the best solution for data centers, especially since 
the microgrid instability might lead to more challenges in 
meeting the workload performance constraints. To address this, 
we present a novel solution with three power control methods 
to keep the voltage deviation under a specified stability 
threshold. We prioritize the battery usage since it does not 
impose any performance overhead, and use the other methods 
as the backup solutions to maintain the grid stability. The exact 
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mixture of the power management mechanisms depends on 
data center design decisions and the workload types. Higher 
performance overhead can be avoided with larger batteries. 
Similarly, we can consolidate more of the non-critical jobs to 
reduce the required battery capacity at a small overhead. 

 
Figure 10. Battery capacity vs. workload performance 

VI. CONCLUSION 

Alternative energy sources and smart buildings are essential 
parts of microgrids to ensure its operability. These systems 
require constant monitoring with sensors and smart meters that 
need a computational center with communication capabilities. 
Small, micro data centers can act as the local cloud systems for 
the microgrids by bringing the computation closer to the data 
sources. However, the power demand of these small centers 
can still be high compared to the other buildings in the circuit, 
which can create high voltage deviations in the electric grid. 
This paper presents a power management mechanism that 
minimizes the voltage instability caused by a data center, while 
considering the workload performance constraints. Our 
mechanism preserves the grid stability 97% of the time and 
reduces the maximum voltage deviation by 27%. It uses the 
allowed performance limits effectively, with no more than 10% 
performance overhead for batch jobs and completing the 
service jobs within 20% of their target deadlines. 
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