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Abstract—The Smart Grid is drawing attention from various research
areas. Distributed control algorithms at different scales within the grid
are being developed and deployed; yet their effects on each other and
the grid’s health and stability has not been sufficiently studied due to
the lack of a capable simulator. Simulators in the literature can solve
the power flow by modeling the physical system, but fail to address
the cyber physical aspect of the smart grid with multiple agents. To
answer these questions, we have developed S2Sim: Smart Grid Swarm
Simulator. S2Sim allows any object within the grid to have its own
independent control, transforming physical elements into cyber-physical
representations. Objects can have any size ranging from a light bulb to
a whole microgrid and their representative data can be supplied from
a real device, simulation, distributed control algorithm or a database.
S2Sim shields the complexity of the power flow solution from the control
algorithms and directly supplies information on system stability. This
information can be used to give feedback signals like price or regulation
incentives by virtual coordinators to form closed-loop control. Using three
case studies, we illustrate how different distributed control algorithms can
have varying effects on system stability, which would go undetected in
the absence of our simulator. Furthermore, our case studies show that
control algorithms can’t be justified without being tested within the grid.

I. INTRODUCTION

With the growth in information technology and increasing demand
for power, interest in the smart power grid has risen rapidly. As
smarter loads, devices, appliances, storage elements and generators,
or, in general, a swarm of objects with sensing and/or actuation
capabilities connect to the grid, the need for scalable, stable and
distributed control algorithms rises rapidly. There is large body of
research on the control of both the client side and the utility-provider
side of the smart grid separately. This multi agent system is shifting
the physical electrical grid into a Cyber Physical System (CPS). One
of the most important aspects of the smart grid is the electrical
stability of the system. The classical power grid model has more
concrete separation of the demand and generation sides. The smart
grid, in contrast, with its CPS side of distributed control, generation
and energy storage devices [7] is forced to be smarter to address the
dangers of instability that can cause major problems, e.g. blackouts.

The elements in the smart grid are moving towards a more
autonomous and distributed structure, with diverse control algorithms.
Home automation [20], offices with HVAC controllers, microgrids,
datacenters using Photovoltaic (PV) [9] or energy storage devices at
substation levels [10] are examples of increasing autonomy. But, ma-
jority of the control algorithms are designed from a local perspective,
modeling the grid as an uninterruptible power supply. This approach
has two major flaws: 1) The cross-effect of multiple controllers on
each other is not studied, 2) The cumulative-effect of the control
decision on the grid itself is left out. It is crucial to test and evaluate
any control solution not only in an isolated environment, but also
with respect to the bigger picture of the constituent smart grid

in order to get a more realistic success metric. Recently, a white
paper from a multi-institutional collaboration mentions a need for a
smart grid simulator that can connect loads from different physical
locations, including real hardware to bring the physical aspect into the
loop [14]. In order to achieve these goals, there is a need for a smart
grid simulation tool, which can handle the swarm of objects with
distributed, diverse (possibly heterogeneous) control algorithms in a
dynamic fashion, without introducing any constraints on the objects.

In order to address these needs, we designed and implemented
S2Sim , Smart Grid Swarm Simulator. S2Sim allows real-time co-
simulation of distributed control algorithms within the smart grid
and studying the grid’s behavior and health under various desired
conditions. To the best of our knowledge, existing simulators in the
literature either don’t support dynamic, real-time object behavior [3]
or constrain the object control strategies to predefined libraries with
predefined behavior [1][2][4]. Section II has a detailed analysis of
existing tools and their limitations. Our main contributions are:
1) A smart grid simulator, capable of evaluating independent dis-
tributed control algorithms to analyze stability and control issues in
the smart grid with heterogeneous objects connected to it. The sim-
ulator shields the complexity of the non-linear power flow equations
from the control algorithms.
2) A multitude of objects within the grid can be represented as an
external (possibly real-time) data stream, a real hardware, simulation
code or control algorithm over a reliable TCP/IP connection. These
objects can represent any type of grid element, ranging from loads,
generators, microgrids to energy storage elements at any scale, such
as a single light bulb or a whole microgrid. In contrast to classical
simulators, objects enable the simulation of smart grid’s CPS aspect.
3) Multiple coordinators can connect and access system-wide infor-
mation to emulate coordination logics such as the microgrid or a
home control hub. Coordinators can provide feedback such as pricing
or stability information to objects.
4) S2Sim handles time synchronization among objects despite differ-
ent time constants such as an air conditioner and a PV.
5) Our simulator provides an application layer communication proto-
col for remote access over any network interface. This enables objects
that are physically distant from each other to form a virtual grid,
enabling parallel computing capabilities. We used this property to
perform a US-wide case study.

II. RELATED WORK

There are various smart grid power flow simulators in the liter-
ature: open source simulators OpenDSS [3] and GridLab-D [1] or
commercial products as RTDS [4] and Paladin Live [2]. The objects
in these simulators are static objects with fixed behavior, predefined
with a time series throughout the simulation. This static behavior
prevents any reaction from either the objects or the utility, making



it impossible to co-simulate distributed control algorithms. The only
way to overcome this is to set the simulation time to a single step
and readjust the scenario for the next time step. One common point
of the mentioned simulators is that they can all solve the complex
non-linear power flow equations efficiently.

OpenDSS and GridLab-D represent the grid by impedances and
lines connecting them. There are two ways to control object behavior.
The first pre-loads the object behavior as time series before the simu-
lation. The second uses a Dynamic Link Library (DLL) that represents
the object behavior during the simulation. The main disadvantage of
the first method is the static simulation, where the objects cannot
react to anything due to preset object behavior. The second method
adds dynamism to the object behavior, but is constrained by the
implementation guide of the DLL.

None of the simulators have an interface for a coordinator that
can give feedback signals like price or regulation incentives back
to the objects. These simulators are thus limited to an open-loop
control in nature. RTDS is very powerful in terms of connecting
actual devices to the simulation environment. But it is again limited
to the libraries provided by the simulator and thus constrains the
control application scenarios. Paladin Live allows real-time system
monitoring and provides tools to analyze the system health. However,
its simulation mode is for general power system design and is not able
to do distributed control simulations.

Other studies on specific load models and their real time simula-
tions also exist in the literature [12], but they fail to consider general
and heterogeneous control cases, but rather concentrate on specific
scenarios. In [11], the authors introduce a real-time combined power
flow simulator and electromagnetic simulator, but the scenarios and
the system are all static, i.e. flow of simulation is preset before run-
time. In [15], Real Time Digital Simulator (RTDS) [4] has been used
to simulate a fuel cell vehicle, where the operation is limited to the
specific load scenario of a fuel cell vehicle.

As a summary, existing simulators have very powerful non-linear
power flow solvers that can calculate the voltage drops efficiently
in the physical system. Yet, they lack the ability and the interface
to connect and test dynamic online scenarios, distributed control
algorithms, reactive control algorithms and feedback based (closed-
loop) control algorithms, representing the emerging cyber physical
aspect of the smart grid. Furthermore, classical simulators fail to
address time synchronization since the scenario is a static simulation.
To answer all these missing points and still maintain the powerful
aspects, we have developed S2Sim.

III. S2SIM ARCHITECTURE

The classical power grid is a network of many different grid
elements connected to each other over the electrical lines. This graph
is mostly represented by an impedance matrix. We use this physical
circuit as the basis of our architecture. But, with the emergence of
Smart Grid, we need to add additional concepts on top of the physical
electrical circuit in order to represent the resulting CPS.

The first concept we introduce with S2Sim in the object. An object
is the cyber/virtual representation of a physical circuit element. It
controls the behavior and the loadshape of the physical element it is
representing. It is of crucial importance to represent these elements
correctly for power system simulation [6]. The second concept is the
optional component of coordinator. The coordinator is a completely

virtual entity, which implements the feedback logic that will be
present in the CPS. Figure 1 shows an example scenario for the overall
architecture of S2Sim.
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Fig. 1. Example Architecture of 3 main elements

A. Object

An object is the cyber representation of any physical entity
defined on the physical circuit. It can represent any type, such as
loads, generators, energy storage devices or a combined system as a
single entity. Objects can be of any size in the grid, ranging from a
toast machine to a whole microgrid. Objects can be self-aware and
implement distributed control algorithms to adjust their behavior, such
as real-time consumption of a building, output of a solar panel, charg-
ing characteristic of a battery or the output of any simulation. Object
behavior is controlled over a TCP/IP communication interface, which
allows it to be virtually anywhere. S2Sim does not implement the
behavior of the objects, but provides the communication framework
the objects have to use in order to co-simulate their outputs. The
minimum requirement for an object implementation is for the object
to output consumption values, which is used to adjust the physical
representation of it. There is no limitation on the frequency of the
output as all time synchronization is done by S2Sim.

B. Coordinator

A coordinator is a special virtual element that can oversee and get
information regarding the whole or a part of the grid at any time. It is
an optional component that provides feedback information to the ob-
jects, such as dynamic pricing or stability related sensor information.
As an example, it can represent the grid perspective, a home control
hub or a microgrid coordinator and serves as a feedback provider to its
intended operation region. The coordinator constructs the missing link
in a closed-loop control scheme, providing various feedback signals
required for normal daily operation on different scales. The simplest
of these is price. Each coordinator has a different strategy for different
types of consumers. Another common signal is regulation incentive,
which guides the consumption of participating customers by giving
incentives. The specific implementation of a coordinator is external to
S2Sim , but requires a specific communication framework to connect
to the simulation. The complex solution of the power flow equations
is completely shielded from the coordinators and is handled by S2Sim.

C. Electrical Circuit

The only physical and static part of the simulator is the electrical
circuit itself. The circuit represents the networked connection of
objects and is determined statically before the simulation starts.
This component represents the classical power flow simulators. Any
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electrical grid item can be defined ranging from loads, generator,
energy storage devices to transformers and circuit breakers. The
electrical circuit is implemented within the simulator and is one of
the essential components. The three layers of components of the
composite simulated CPS is shown in Figure 2.

D. Internal Architecture

For modular structure and flexibility, the internal structure of
S2Sim has three major engines, corresponding to three major tasks:
Communication, Time Synchronization and Power Flow Engines.
Figure 3 shows how these engines interact with each other as well
as the external components, namely objects and coordinators. At any
time, the simulation’s information flow starts from the objects into the
simulator. The incoming information is parsed and processed through
the Communication Engine and is supplied into the Time Synchro-
nization Engine. The data is then time filtered and time synchronized,
and passed to the Power Flow Engine in order to obtain the power
flow solution for the current time interval. The Electrical Circuit
component is modeled within the Power Flow Engine. All obtained
information is then forwarded to the respective Coordinators for
feedback calculation. Finally, any feedback is sent back to the Objects,
closing the information flow loop. During the process, the information
flow with the external components can happen asynchronously, as this
is handled by the Time Synchronization Engine.

1) Communication Engine: Communication engine maintains
end-to-end communication using TCP/IP between the objects and
S2Sim. Since the exchanged data can be sensitive such as the
consumption information of a residential building, we provide an
optional security layer with end-to-end encryption. The encryption
is performed using Secure Sockets Layer (SSL).
We create a common message structure as an application layer mes-
saging protocol to regulate the communication between the simulator

Start of Message0
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8Sender ID Receiver ID
Sequence Number Message Type Message ID

Data Size (N) Unique Structure End of Msg.
16
N+2416

Fig. 4. Common structure of S2Sim messages.

and the objects. The protocol is flexible, extensible, lightweight, low
overhead and has minimal dependency on the underlying infrastruc-
ture. This protocol establishes the minimum framework required by
the implementation of every object. Every communication command
is represented by a separate packet. Examples to these commands
are registration message, consumption reporting message or price
notification message. Although each command has a unique internal
structure, all messages have a common header and ending for message
identification. Any control algorithm that wishes to be represented in
the system, needs only to implement this communication protocol
framework. The common structure is shown in Figure 4.
Start and End of Message: A communication protocol must be
independent of the layers underneath it. These two fields mark the
start and end of a single message. Since a periodic field may endanger
the keys of the encryption, this field must be transmitted unencrypted.
Sender & Receiver IDs: Each object is assigned a unique identifica-
tion number when it registers to the simulator. This ID will be used
for every communication for end-to-end identification.
Message Type & Message ID: The unique structure of a message
is decoded through a two-level hierarchy. Message Type defines the
higher level (e.g. System Messages), whereas the Message ID value
determines the lower level (e.g. Registration Message). The specific
values are defined in the Interoperability Document of the simulator
in a separate document, obtainable from the author.

2) Time Synchronization Engine: Multiple Objects with various
behaviors imply a distributed sense of timing. They may have different
time resolutions and time constants. Consider 2 objects: A phasor
measurement unit (PMU) connected to a PV and a simulated office
building with heating ventilating and air conditioning (HVAC). PMU
provides high resolution, on the order of seconds, near real-time data
and has a small time constant due to rapid solar variations. In contrast,
HVAC simulation has low time resolution, on the order of hours, may
provide simulated information for the future and has a large time
constant due to the slow adapting nature of thermodynamics. Time
Synchronization Engine enables both objects to connect in real-time
and be represented in the same simulation environment.
Time Synchronization Engine filters out past incoming data for the
passive connections, stores future data and provides the current
information for all connections. It integrates different resolutions by
linear interpolation and time averaging for low and high resolutions
respectively. It uses any future information as a prediction and
provides it to the coordinator as an input. The prediction can be
updated if the actual information changes as time advances. For
the previous example, the PMU’s measurements are processed in
real-time, whereas the low-resolution information from the HVAC
is interpolated to obtain the missing points compared to the high
resolution PMU. To represent a broad scale of objects, S2Sim defines
2 types of object connections:
Active Connection: The object is time synchronized to the simulator
and provides real-time information or future prediction. In return, the
object receives feedback information sent by the local coordinator.
If the object fails to communicate within a time interval, previously
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sent information or prediction is used automatically.
Passive Connection: The object connects to the system, uploads
bulk consumption data and disconnects. The bulk data is filtered
and processed. But the coordinator does not provide feedback, as
the object is disconnected and is assumed to be irresponsive to
any feedback. This type of connection enables the connection of
consumption databases or data sources requiring no feedback and is
an easy way to represent an object without any control or automation.
Figure 5 explains the timing with an example. The passive object
provides bulk consumption data for the whole simulation, whereas
the active object is time synchronized and determines its behavior
based on the feedback signals it receives at every time step.

3) Power Flow Engine: Since one of the purposes of S2Sim is
to provide abstraction of the power flow problem to the coordinators,
the coordinator may require an additional ”sandbox” or ”playground”
environment for power flow solutions. The Power Flow Engine uses
the power flow solution interface of OpenDSS [3] over a DLL and
constantly maintains two parallel instances of it. The real circuit
handled on the first instance is modified only to reflect the actual
behavior of objects and any modification represents actual snapshots
of the physical circuit. The second instance has the exact same circuit
at the beginning of each time interval as the real circuit, but is used as
a sandbox to be modified and reset multiple times to answer different
”What if” scenarios that the coordinator might be interested in.

IV. DISTRIBUTED CONTROL SIMULATION

In this section, we demonstrate multiple case-studies how our
simulator, S2Sim, can be used to show how heterogeneous distributed
control algorithms can affect each other and the grid. We first simulate
an average sized U.S. town to show that a complete greedy distributed
control of loads may lead to unstable conditions given static time of
use (ToU) pricing. In response, we show that introducing adaptive
pricing heuristic on the coordination side to guide the grid to stable
operating regions can avert this situation. In the second case, we
use the test bed of a joint project between 6 universities [8] to
test a distributed heterogeneous control scenario. Each university
from different regions of the United States deploys its own control
algorithm. S2Sim combines and synchronizes all objects and provides
a smart pricing heuristic from the coordinator to guide the grid to
stable operating regions. In the third case, we use HomeSim [20],
a residential energy simulator to simulate multiple houses in a
neighborhood to test various control strategies.

A. Validation and Performance Overhead

The simulator has been validated against University of California,
San Diego campus Microgrid measurements, by comparing measured
and simulated voltage deviation information at building terminals.
To give an estimate for the communication overhead, we look at
a sample problem size of 100.000 simultaneous objects. At each
simulation time step, the default communication overhead is the
consumption message from every object to the simulator and, a price
and a regulation message from the simulator to every object. The
messages are only 28 bytes in total. This results in 56N bytes of
overhead for N objects in every time step. The default setting runs
one time step per second, so for a circuit with 100000 simultaneous
objects, this results in 5.6MB/s of communication overhead, easily
maintainable with an everyday home network.
The processing overhead of the 3 main engines are as follows:
Communication Engine has O(N) message processing complexity for
parsing and distributing messages. Time Synchronization Engine has
O(N) complexity for filtering and interpolation. Power Flow Engine
has at least O(N3) due to the power flow solution. Extra overhead
caused by S2Sim besides the power flow solution is only O(N).

B. Time of Use vs. Adaptive Pricing

We use a university campus distribution circuit with both res-
idential and office buildings as the loads. The average total grid
consumption is 10MW , about the size of an average U.S. town with
81 buildings represented as individual objects. Each object runs a
distributed control algorithm, unaware of its surroundings or the grid
and only uses the price signal provided by the utility to adjust its
consumption. The distributed control algorithm of the objects is a
greedy heuristic, which adjusts the consumption in proportion with
the ratio of the average price to the current price. The remaining
consumption is adjusted to fix the total energy consumption, in order
to give a fair comparison among different pricing strategies. The
algorithm at ith step is given below:

AdjustedPoweri = Poweri Avg(Price)
Pricei

(1)

Powerj = Powerj +
AdjustedPoweri−Poweri

N−j+1
, ∀j ∈ (i,N) (2)

This scheme is a simple heuristic assuming an energy storage device
connected to the load, capable of reacting to price changes. We
consider two pricing strategies: 1) Completely static pricing, open
loop without feedback and distributed control case; 2) adaptive
consumption, dynamic price guided, distributed closed control loop
case.
Static pricing uses a ToU pricing scheme with 3 price regions dividing
the day into 4 intervals representing peak, off-peak and super off-
peak hours [5]. The price is static as it doesn’t react to the state of
the grid and is the same for every object. Adaptive pricing computes
a dynamic price for each individual object. The heuristic uses the
information of object’s terminal voltage deviation as a stability metric,
then multiplies it with the object’s current consumption and maps
the value to a price range. The heuristic not only penalizes high
consumption, but also takes into account the voltage deviation, which
is affected by every object in the grid. High deviation caused by any
object thus has a higher price effect on all objects, yet the object that
has caused the condition will have the highest penalty. To avoid rapid
variations in pricing, we pass the immediate price values through an
exponentially weighted moving average filter to smooth out the price
decisions. We take the maximum voltage deviation within the grid as
our stability metric and mark the widely accepted 10% value as the
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Fig. 6. Effect of pricing scheme on the stability of the system behavior.

limit of danger and start of instability.
Figure 6a shows that the result of combined greedy behavior under
ToU pricing in a completely distributed scenario leads to unstable
system behavior, pushing the voltage deviation beyond its safe limits.
The initial spike is largely due to the fact that the controllers are
unaware of each other and react to the low price in a greedy manner.

Figure 6b shows the results for the adaptive pricing scheme.
As with previous results, there is a spike in consumption due to
the greedy distributed control in the low price region. However, the
price adapts to consumption and stability values and, guides the
system to be within stable boundaries to avoid instability. Although
both control algorithms are simple heuristics, we show that good
performance for a control algorithm under isolated conditions is
misleading. S2Sim enables each algorithm to be simulated within the
whole grid, exploring cross-correlated effects in depth.

C. Distributed Heterogeneous Control

We use a university Microgrid circuit with 12 major buildings
represented by a combination of real and simulated objects from
6 different universities. Their physical locations are in California,
Michigan and Pennsylvania, connected remotely over TCP/IP to
S2Sim. We use home automation controller simulation [20], actual
battery bank controller [16], real-time consumption of an actual
building with actuation [19] and 3 different HVAC control simulations
with different strategies [13][17][18], summarized in Figure 7a. We
use the same heuristic pricing as in the previous section. Figure 7b
shows that the independent distributed controllers increase their
consumption leading to increasing voltage deviation (solid) within the
system, endangering the system health by coming close and exceeding
the 10% limit (horizontal). The adaptive price (dashed) increases to
guide the system back into the stable region and later achieves it. This
study shows that, well performing algorithms in isolated situations,
may lead to an unstable system, when working together.

D. Neighborhood Simulation

To further demonstrate the abilities of our simulator, we extend
the first case study for time of use pricing by eliminating the coordi-
nator entirely and randomizing the consumption intervals in order to
distribute the total consumption over time. We consider a residential
neighborhood with 160 buildings. Consumption values are obtained
from a residential simulator called HomeSim [20]. To decrease the
probability of a high consumption correlation, each building selects
a random shifting amount without any further knowledge and shifts

its consumption value by the selected value in time. The random
value is a uniformly distributed value drawn from three different
intervals for the three cases considered: 1) [0, 1], 2) [0, 2], 3) [0, 3]
hours. Furthermore, we use the two algorithms used in the first case,
where the buildings implement greedy distributed control and the
coordinator is providing static and dynamic pricing feedback. 50
iterations have been averaged to get stable results. Figure 8a shows
the results for all 5 control algorithms considered. The maximum
observed deviation values are shown in Figure 8b. The only algorithm
that fails the voltage deviation limit is the greedy control case with
static pricing as in the first case. Active feedback manages to keep the
stability within the limit as in the first case. The additionally tested
randomization algorithms without feedback manage to decrease the
deviation and the peak is decreased by increased randomization.

V. CONCLUSION

The classical power grid is transforming into a cyber physical
system, the smart grid. Distributed control algorithms for different
platforms are being developed and deployed in different scales.
Existing grid simulators solve the power flow of the physical aspect of
the grid efficiently, but fail to address the co-simulation of distributed
control algorithms, thus the CPS aspect of the smart grid. There is
a need for a flexible simulator to co-simulate and test independent
distributed control algorithms in order to observe their effects on both
each other and the health of the system. To answer this need, we
have developed S2Sim. S2Sim allows the co-simulation of any object
connected over TCP/IP, which can represent any type and any size of
grid elements, with distributed independent control strategies. S2Sim
takes care of communication, time synchronization and introduces an
interface for multiple coordinators to construct closed loop feedback
controlled system. S2Sim is extensible, scalable and has low overhead.
We present 3 different case studies specifically possible with our
simulator, where the first case shows, why it is necessary to have
closed loop control for grid stability. The second case shows that we
cannot justify the performance of a control algorithm under isolated
conditions alone, without testing it within the grid picture. The third
case shows that we can use S2Sim to compare the performance of
different heuristics using our tool.
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