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Abstract—Smart spaces have become an integral part of our
daily routines to improve quality of life for many different groups
of people. The use of embedded systems to build these smart
spaces, in combination with data analytics, can provide real-
time information about the environment and how it interacts
with the people in it. In this paper, we demonstrate how one
embedded system that acquires data based on a 2-dimensional
positional-grid, movement, temperature and vibration is used
to build a smart and pervasive space. Data collected from
these sensors is used for real time localization in conjunction
with machine learning mechanisms to analyze human activities.
We evaluate five machine learning algorithms, namely Logistic
Regression, Support Vector Machine, Decision Tree, Random
Forest, Naive Bayes and Artificial Neural Network applied on
a dataset collected in our lab. Results show high classification
performance for all methods giving up-to 99.95% classification
accuracy. These patterns provide useful information about oc-
cupancy patterns, movement patterns, etc., which will be later
used to allocate computational resources in the smart space
accordingly. Furthermore, our implementation does not use any
camera or microphone deployment, hence addressing potential
privacy issues.

Index Terms—smart space, wireless sensor network, human
behavior, data analysis, machine learning.

I. INTRODUCTION

Smart spaces have gained significant attention over the last
years due to advancements in technology and ease of de-
ployment. These spaces combine small and efficient hardware
with data management mechanisms to provide solutions in
various domains including health-care, wellness, education,
etc. One of the important aspects of smart spaces, compared
to traditional spaces, is that there is a constant interaction
between humans and the surrounding environment and these
interactions are captured by the deployed hardware. For some
applications, such as health-care, it is imperative to analyze
the human-device interaction to further understand the human
behavior patterns in such environments. Previous studies tried
to achieve this goal by using camera and/or microphone
sources or wearable devices, e.g. [1], however, this raised
very important privacy concerns. Furthermore, video and audio
processing requires significant computation overhead, making
them difficult to apply in applications that require real-time
data analytics.

Smart spaces are usually shared by multiple people. These
shared spaces commonly suffer from a lack of reliable data
metrics for effective resource allocation and the ability to
predict future change in resource needs. The ability to rec-
ognize human behavior plays an effective role in providing
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useful data. Management of facilities can use passive data
gathering (no human intervention) such as this to create more
informed decisions about where to effectively allocate staff,
what portions of their facilities are underutilized, address
security concerns, and when and where to allocate expensive
resources such as power dedicated to HVAC systems [2] [3].
Another example is elderly health-care, where understanding
and predicting user behavior patterns can provide timely and
crucial information. Possible benefits include quality of life
improvement, resource sharing improvement, etc. [4], [S].

In this paper, we demonstrate a smart space implementation
that provides real-time user localization, activity detection and
prediction. Different than previous studies, our system lever-
ages efficient deployment of a variety of sensors along with
a tightly coupled data collection and management strategy.
Furthermore, we try to understand human behavior patterns
via ambient sensors, that do not jeopardize user privacy or
preferences, instead of camera, audio or wearable devices. Our
smart system deploys a 2-dimensional positional grid intended
to reliably detect humans. Sensors that detect temperature,
motion and vibration allow us to accurately model human
actions and transitions to and from the rooms in question.
Our system leverages an efficient database implementation that
helps manage real-time time-stamped data.The database is ini-
tially given preliminary ground-truth data, representing model
human actions. Finally, we classify user activities and predict
occupancy status of smart spaces using low overhead machine-
learning methods, in order to obtain a real-time system. We
found that Support Vector Machine classification algorithm
gives the best result with 99.95% classification accuracy for
activity detection task.

II. RELATED WORK

Previous research addressed some aspects of human behav-
ior detection in a variety of ways. Ghosh et al. [6] used a grid
of ultrasonic HC-SR04 sensors and machine learning to detect
various activities based on the resulting data. However, this
activity detection was limited, as their hardware was limited
to positional sensors. In addition, we use motion detection
and vibration detection to detect subtle differentiation between
activities, such as sitting idle, working on a laptop, or talking
on a phone. Mannini ef al. [1] used a single accelerometer
sensor to detect activities. While the system performance was
good, use of an accelerometer on waist or ankle is not practical
in areas where the occupants keep changing. Chawla et al.
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Fig. 1 : A panoramic view of the experimental setup

[7] used machine learning methods to recognize user-specific
activities. They collected data from 8 different users for 6
activities using a single wrist mounted module which sends
data over bluetooth. Wrist mounting limits deployment of
this module in real life as it restricts natural movements. In
another work, Casale er al. [8] used a single chest mounted
accelerometer sensor system to detect human behavior. To use
this system in common spaces, we would need to provide each
user with a data acquisition device and this might restrict their
natural movements.

Modern day people commonly have smart-phones and
smart-watches. These smart devices have many sensors em-
bedded in them and many studies on human context recogni-
tion have taken advantage of this. Vaizman et al. [9] collected
labeled data from 60 subjects and used it to classify daily
in-the-wild context. To use this system in practice every user
needs to install a smart-phone application and companion ap-
plication for Pebble Smartwatch which increases dependency
of the system on users. Davis et al. [10] used a similar system
for Ambient Assisted Living(AAL) where users are required
to wear a waist-mounted smartphone belt. Uncomfortable
and inconvenient equipment compromises natural behavior.
Another similar project by W. Ruan er al. [11] sought to
localize individual humans within a space using RFID tags
embedded within a room. This worked for a home environment
in which all devices could be embedded with RFID tags,
but would not be easily expandable to a shared public space
where individuals would bring and use their own devices.
To overcome this problem, some studies used methods that
require audio/video sources to track the behavior of humans
[12], [13]. However, this creates a very important privacy
concern among the users of a smart space that is tracked with
cameras or microphones.

Table I shows several other similar smart spaces used to
model or predict specific human behaviors. As demonstrated
in the table, they either rely on cumbersome wearable sensors
or omit data analytics.

According to authors of [9], to promote real-life, working
applications, research has to be done in natural and realistic
settings. This satisfies four in-the-wild (capturing people’s
authentic behavior) conditions: naturally used devices, uncon-
strained device placement, natural environment, and natural

Wearable
Authors Market Data Analytics | Sensor De-
pendency
Ya-Li Zheng et al [14] Healthcare Overview Only Yes
Vince Stanford [15] Healthcare Not Included Yes
Majd Alwan et al [16] Elder Care Minimal No
PV Vinu er al [17] Education Not Included Some
A. Coronato et al [18] Office Use Included Some

TABLE I: Existing modern smart spaces
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Fig. 2 : System block diagram

behavior content. Experimental setups should be capable of
real life deployment so that variance in the model is at a min-
imum. All of the previously listed projects did their detection
with varying amounts of user dependency/involvement, such
as wearing sensors or installing a smart phone application.
However, this is not possible in all practical applications. e.g.
if a smartphone is being used to collect data, students in the
library room and persons in conference rooms often keep their
smartphones on a table rather than in pockets. In this case data
acquired may harm a machine learning model that is being
trained online. We collect a variety of data types from sensors
embedded in the environment detecting position, movement,
and vibration for the purposes of differentiating between a
variety of activities and human behaviors, while still being
able to detect various numbers of occupants.

III. OUR SMART SPACE DEPLOYMENT

A. Smart Space Goals

The primary purpose of this system was for modeling
human behavior in shared rooms while following four in-
the-wild conditions given in [9]. Monitoring the occupant
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activity and position in shared spaces would allow other users
to know about the current status/occupancy level, or provide
help to the users of the system (such as elderly care). Data
analytics could give users insight into future space occupancy,
and provide short-term activity prediction. Occupancy of such
shared spaces can vary widely based on time of day or day
of the week e.g. study rooms at a school may be occupied
for much longer periods prior to students final exams, or
a common area might be more crowded during lunchtime
in a wellness institution. Data analytics would utilize trends
normalized for season, time of day, day of week, etc. in order
to give the system users useful metrics.

Privacy is an ever-present concern in sensor based IoT
systems [19]. These concerns are primarily due to the use of
cameras and microphones in such systems to understand and
model human behavior. In our system’s implementation, we
address this issue by not using any recording devices. Instead,
our system setup uses only ambient sensors and hence does
not record any specific activity of a specific person Although
our system analyzes human behavior, we are not identifying
the people involved with camera images or audio records.

B. Environmental Setup

Our system uses a Raspberry Pi as the base computation
node. As illustrated in Figure 2 , this Raspberry Pi collects data
signals from various sensor inputs. The data is then transmitted
to a server, where it is stored in a database. MQTT(Message
Queuing Telemetry Transport) client-server protocol is used
for data transfer due to its lightweight nature and ability to
work even with weak Wi-Fi signals [20]. The database is
accompanied by a Python script on the server that simply runs
on the background in a separate thread, waiting for an MQTT
message to be published by the Raspberry Pi. Data analytics
algorithms then use this data for localization, activity detection
and several user-end outputs. Figure 1 illustrates the real-
world implementation and construction of the data collection
environment, which is demonstrated in abstract by Figure
2 . Sensors we have used are mainly HC-SR04 Ultrasound
Range Sensors [21], Piezoelectric Sensor [22], Digital Mi-
crowave Sensor SKU:SENO0191 [23], Passive Infrared Motion
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Detector and Thermal sensor array MLX90621 [24]. Aim of
the system is to localize the person inside and detect it’s
activity. Ultrasound Sensors, Microwave Sensor, PIR sensor
and Piezoelectric sensors are used for localization and to
cycle power only through active components depending upon
occupancy status. Thermal sensor is used for activity detection
using machine learning algorithms.

C. Localization and Activity Detection

1) Localization: In Ambient Assisted Living(AAL) sce-
nario, localization should be realized without instrumenting the
persons to be tracked. Peter Hevesi et al. [25] used low cost IR
sensors to track person within the smart environment. We have
used low cost, low energy ultrasound sensors HCSR04 [21]
to locate person within the environment in real time. Despite
being relatively inexpensive and being somewhat imprecise,
this is used in various proximity detection applications [6]
[26]. These are placed in a grid as shown in Figure 4 .
The two dimensional positional grid made up of ultrasonic
sensors has the ability to differentiate between numbers of
occupants. Figure 3 shows object localization map where the
rectangle represents our smart environment. We have mounted
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X sensor array at different elevation than their Y counterpart
to differentiate between the person standing and sitting on the
chair as shown in Figure 1 . To differentiate between sitting
and standing person at the same position (x,y), we use blue and
red colored dots. Figure 3 a and 3 b correlate real-time sensor
data and localization result. Deflection of sensor y7 and y8 on
the y-axis is occurring due to object in-front of them(Due to
small spacing between two sensors , two sensors are deflected
at once). Therefore, y position of dot is 230. X position is the
output of these two sensors i.e. 80. Since X axis is at elevated

Fig. 6 : Thermal Sensor (Front View)
[26]

Floor

Fig. 7 : Future Sensor Placement

height and sensor on this axis is deflected, person is standing
and dot color will be Red.

2) Activity Detection: We divide activities into Static Ac-
tivities(standing, sitting on chair, sitting on ground, laying
on ground) and Dynamic Activities(move to the right, move
to the left, move towards the sensor, move away from the
sensor). The goal of the paper is to show the potential use of
grid based environment with thermal sensor for localization,
activity recognition and present results for detecting two basic
activities.

a) Data Collection: Non contact thermal sensor
MLX90621 have been used to collect data for activity recogni-
tion. MLLX90621 has 120 ° horizontal field of view(FOV) and
25 © vertical FOV with output in 4x16 array as shown in Figure
6 . We can’t construct an image from such a low resolution
output therefore privacy is not hampered. Each value in 4x16
matrix gives temperature in that area which was directly fed
to the machine learning algorithms after flattening, without
any feature engineering. With a single sensor placed on the
middle of vertical wall as shown in Figure 5 , we can capture
only two activities which are standing (STAND) and sitting
on the chair(SIT). Figure 8 shows heatmap of data collected
for person standing and sitting on the chair. Sensor is pro-
grammed to get 4 frames/second with I2C interface connected
to Arduino. We collected 111,225 labeled examples in ten
days with five volunteers. Class STAND has 49384 labeled
examples whereas class SIT has 61841 labeled examples. To
capture more than two static activities, we need to increase
vertical FOV by installing multiple sensors as shown in Figure
7 with all A,B,C equal to 25°.

b) Algorithms: We compared the performance of five
machine learning algorithms using open source frameworks
SciKit-Learn and TensorFlow.

1. Logistic Regression: Logistic Regression is a binary
classification method which estimates probability of an
instance belonging to the particular class. We used linear
solver with regularization strength parameter C= 1.

2. Support Vector Machine(SVM): SVM which is a
strict binary classifier like Logistic Regression, has been
extensively used for human activity classification task [27],



[28]. one-vs-all or one-vs-one techniques are used to extend
SVM for multiclass classification. We used SVM algorithm
from Scikit-Learn with "rbf” kernel, “hinge” loss and
regularization parameter C=1.

3. Decision Tree(DecTree) Decision Trees are very powerful
algorithms used for classification [29]. Scikit-Learn uses
CART algorithm to train Decision Trees and Gini impurity
to check quality of split. CART is a greedy algorithm which
looks for optimum split at top level and repeats the procedure
for all levels. It selects feature k and threshold ¢; such that it
refines class prediction at each level.

4. Random Forest(RandFor) Ensemble methods combine
predictions from several base estimators. Random forest is an
ensemble method with Decision Tree as a base estimator. We
used 10 Decision Tress as base estimators.

5. Naive Bayes(NaiveB) Naive Bayes is a supervised learning
algorithm based on applying Bayes theorem assuming all
features are independent. Naive Bayes classifiers are very fast
and differ by the assumption they make about P(X|y) where
X is feature and y is label. We used an algorithm with an
assumption of Gaussian distribution.

6. Artificial Neural Networks(NN) NN structure is composed
of several layers of nodes connected by weighted links. We
used a three layer feed forward neural network written in
TensorFlow. Number of inputs to the neural network are 64(4
x 16 output of MLX90621 flattened). Each hidden unit has
10 neurons. We used Batch Gradient Descent optimizer with
batch size of 200. With no regularization, learning rate is set
to 0.01 and activation function used is leaky relu.

IV. RESULTS

To achieve best classification performance, Stratified K-Fold
cross-validation (with k = 10) technique was applied to each
classifier. This reduced the variance of the resulting estimates
because every data point was used in test set only once.
Performance metrics of the classifiers are shown in Table II.
Since accuracy is not always good measure of the performance
for classifiers, we also use F1 score. Each row in the confusion
matrix represents actual class and each column represents
predicted class as shown in Table III. Precision is the accuracy
of positive predictions of the classifier. Recall(Sensitivity) is
the portion of positive instance that are correctly detected by
the classifier. F1 score is the harmonic mean of precision and
recall, giving more weight to low values.

_ Tp4+Tn
e Accuracy = P ey ey
L .
o Precision = TriFp .
P -
o Recall/Sensitivity = To Py

o Specificity = 71—
where Tp is true positives, T’y is true negatives, Fp is false
positives and Fly is false negatives.

Table II shows the performance of all models. We noticed
a very high accuracy of 99.95% with Support Vector Ma-
chine(SVM) classifier whereas Naive Bayes classifier gives
lowest accuracy of 91.67%. Accuracy of machine learning al-
gorithms depends on bias and variance. Naive Bayes algorithm

Classifier | Accuracy | Precision | Recall | Specificity F1
Logistic 97.83 98.01 98.09 97.50 98.04
SVM 99.95 99.93 99.98 99.91 99.95
DecTree 99.34 99.42 99.39 99.28 99.40
RandFor 99.67 99.54 99.88 99.42 99.70
NaiveB 91.67 91.58 93.19 89.16 92.36
NN 99.44 99.45 99.55 99.31 99.49

TABLE II: Performance Metrics For Algorithms in (%)

assumes that data distribution is Gaussian which introduces
bias leading to low overall accuracy. Table III shows confusion
matrix for best and worst classifier. Ensemble models in most
of the cases outperform the base estimator. Single decision
tree gives average accuracy of 99.34% on 10 folds whereas
an ensemble of 10 decision trees slightly outperform giving
overall accuracy of 99.67%. Deep feed forward neural network
with three layers gives an average accuracy of 99.44% which
is slightly less than best performing SVM model.

Predicted Predicted
a a
Z Z
= E = =~
»n » »n »
T§ SIT 61829 W’ T§ SIT RIRLL] 5443
<<t) STAND 42 49342 <<t) STAND 3867 BESRIN

TABLE III: Confusion Matrix. SVM (left) NaiveB(Right)

For practical deployment of the model, train and test time
of machine learning algorithms plays an important role. We
evaluated train(on 90% of an entire data) and test time(on 10%
of an entire data) for all models. Workstation used for bench-
marking has Intel(R) Xeon(R) CPU E3-1270v5@3.60GHz
processor and 8GB RAM. Figure 9 shows comparison of
train and test time in seconds for machine learning algorithms.
Out of all machine learning algorithms SVM takes highest
time of 46.45 seconds. Computational complexity for SVM is
O(m? x n) where m(here 100,102) is number of the training
examples and n(here 64) is number of features. Computational
Complexity for Decision Tree is O(n * mlog(m)) having log
relationship with number of examples leads to faster training.
Therefore, decision tree and random forest takes 10.58 and
6.23 seconds respectively. To make predictions, each node
in tree based algorithm requires checking only one feature
making time complexity O(logz(m)). Naive Bayes based
model has training time complexity O(n*m) making it fastest
to train but average accuracy is lowest. Training time for a
neural network with three hidden layers trained in 100 epochs
with 10 neurons in layer is approximately 90 seconds.

V. CONCLUSION

In this paper, we demonstrated the potential use of 2-D
grid based smart space for human localization and activity
detection. A two-dimensional grid of positional sensors
allows it to more accurately model occupant position within
a room. Furthermore, the lack of video and audio devices
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within the sensor network addresses concerns over privacy.
We evaluated and compared the performance of six machine
learning algorithms namely Logistic, Support Vector Machine,
Artificial Neural network, Decision Tree, Random Forest and
Naive Bayes in terms of average accuracy and training/test
time. Experimental results reveal the superiority of SVM
classifier for basic human activity classification task giving
99.95% accuracy with equally good precison and recall.
Although, SVM classifier demonstrated good performance
but it’s cubic dependency on number of examples make
it suitable only for small or medium sized training sets.
Ensemble algorithm Random Forest gives 99.67% accuracy
which is slightly less than best classifier but is an ideal for
large training sets as well as increased number of classes. Our
future work will represent results for other static activities
and dynamic activities. This smart space architecture can
be applied to a variety of shared spaces, such as instructor
allocation in school classrooms, occupant management
for library study rooms, conference room assignment, and
management of HVAC systems.
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