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Abstract—The Internet of Things (IoT) envisions to cre-
ate a smart, connected city that is composed of ubiquitous
environmental and user sensing along with distributed, low-
capacity computing. This provides ample information regarding
the citizens in various smart environments. We can leverage
this people-centric information, provided by the smart city
infrastructure, to improve “smart health” applications: user
data from connected wearable devices can be accompanied
with ubiquitous environmental sensing and versatile actuation.
The state-of-the-art in smart health applications is black-box,
end-to-end implementations which are neither intended for use
with heterogeneous data nor adaptable to a changing set of
sensing and actuation. In this work, we apply our modular
approach for IoT applications – the context engine – to smart
health problems, enabling the ability to grow with available
data, use general-purpose machine learning, and reduce compute
redundancy and complexity. For smart health, this improves
response times for critical situations, more efficient identification
of health-related conditions and subsequent actuation in a smart
city environment. We demonstrate the potential with three sets
of interconnected context-aware applications, extracting health-
related people-centric context such as user presence, user activity,
air quality, and location from IoT sensors.

Index Terms—Internet of Things, Smart health, Context-aware
computation, Personalized health-care

I. INTRODUCTION

Sensor networks and ubiquitous sensing are evolving into
the Internet of Things (IoT) – sensing and actuation backed
by the existing and growing Internet infrastructure [1]. This
phenomenon enables more frequent and contextually-rich in-
teractions with people and the surrounding environment. Fur-
thermore, these environments have become truly augmented
with rapidly growing available sensing and actuation devices
[2], evolving into smart spaces and eventually smart cities.
IoT applications in smart cities operate amid changing inputs
and available compute nodes as sensors and devices enter and
exit an application’s domain with the goal of leveraging any
available data to drive automated actuation.

The available IoT infrastructure in a smart city environment
presents an excellent opportunity to improve and extend smart
and connected health applications that focus on individuals.

Jaganathan Venkatesh was with the Computer Science and Engineering
Department, UC San Diego, CA, 92093 USA e-mail: jvenkate@eng.ucsd.edu.

Baris Aksanli is with the Electrical and Computer Engineering Department,
San Diego State University, CA 92182 USA e-mail: baksanli@sdsu.edu

Christine S. Chan is with the Electrical and Computer Engineering Depart-
ment, UC San Diego, CA, 92093 USA e-mail: csc019 @eng.ucsd.edu.

Alper Sinan Akyurek and Tajana Simunic Rosing are with the Department
of Computer Science and Engineering, University of California San Diego,
CA, 92093 USA e-mail: aakyurek,tajana@eng.ucsd.edu.

By their very nature, smart health applications exemplify the
prototypical context-aware IoT application: they monitor users
[3][4] and/or the environment [5] for important conditions and
provide some actionable or visualizable output. As the more
complex scenarios often involve higher-order processing[6],
specialized processing or machine learning are also employed
[7][8]. However, with ubiquitous sensing and actuation in the
IoT, we can extend these applications to leverage data about
the physical and virtual spaces through which the user moves.

To date, a majority of smart health applications focus on
monitoring a patient within a fixed location (e.g. a hospital
room or home) or monitoring a patient’s state (e.g. with
medical-grade wearable devices) [8]. The advent of the IoT
allows smart health applications to focus on the intersection
of an augmented environment (smart space) and the users that
move through it [6]. The environment-provided context can be
leveraged to inform or guide user behavior[3], while the user’s
presence, activities, and goals – the user’s context – is used
to update and further augment the physical and virtual spaces
they move through [9]. While the value of the contextual data
dynamically changes according to the user or environment, its
type, range, and sources are always defined within an ontology.

In the absence of the IoT, the current state of the art in smart
health applications is end-to-end systems tightly coupled to the
initial infrastructure and platforms. This is due to a specificity
of body-worn sensing systems and their associated uses [10].
However, commercial wearables that monitor similar data are
prevalent as IoT devices. Furthermore, in the context of the
IoT, the currently tightly-coupled applications do not promote
adaptation to the changing amount and sources of data or
available compute nodes. While other aspects of smart health
applications are moving towards a more generic approach:
unified data storage and frontend infrastructure based on
electronic health records (EHRs) [11] and standardization of
medical device approval [12], applications themselves remain
black-box, end-to-end (monolithic) implementations that pro-
duce application-specific output.

We have previously proven that smaller, simpler functional
units provide intermediate steps towards an overall application
that can alleviate application redundancy and facilitate the
use of general-purpose machine learning [13]. Smart health
applications fall within the scope of the same problem. In
this work, we present connected health applications comprised
of general purpose functional units (context engines). This
modular approach can provide similar complexity improve-
ments due to the processing complexity, and can reduce the
impact on accuracy. We build three case study applications,
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combining medical-related sensing (user activity and local air
quality) with other IoT sensors in the space around them
(potential to increase physical activity and alternate routing for
respiratory health) and smart meter data to infer user presence.
They all take advantage of the ubiquitous sensing and many
distributed compute nodes available in the IoT space. They
also demonstrate how our approach can help “grow” additional
applications using existing infrastructure.

This motivates a new approach to smart health applications
in the context of the IoT: share common processing to trans-
form raw user data into intermediate context. Furthermore, we
can expand these applications to take advantage of secondary
sensors in the environment for correlated processing, and the
more numerous IoT computational units (e.g. smartphones,
health monitoring devices available throughout a smart city
environment) associated with each user to perform distributed,
user-specific output generation. The overall advantages of
this approach are: improved latency, reduced overhead, and
general-purpose machine learning. For smart health, this trans-
lates to faster response to critical situations (e.g. more timely
notification of air quality and alternate routing); more efficient
processing of health monitoring (e.g. implementation on the
low-capability wearables and mobile devices); and ease of
creation and expansion of health applications (e.g. growing the
scope of health monitoring using the existing infrastructure).

II. RELATED WORK

Pervasive sensors gather raw data from a diverse combi-
nation of data sources, including sensors and user-supplied
or high-level context processed from mobile and computing
devices. Analog sensor data has to be at least digitized and
preprocessed before software can use it as meaningful input. In
the Internet of Things, most data goes through several levels of
abstraction, combination, or distillation to produce a descrip-
tion of the environment (and its users) with discrete, semantic
states. This higher level context is used for visualization
(e.g. quantified self [14], vehicular safety [15]) and actuation
(smart spaces [16], ubiquitous computing [15], medicine [7],
e-learning [17] and user behavior tracking [18]). In exchange
for raw data precision, discretized context facilitates intuitive
reasoning and reuse across applications. These current context-
aware applications are individual deployments that rarely share
infrastructure, code, or data natively. Practically, this end-
to-end development approach results in a disorganized data
space, necessitating the use of ontologies to maintain a unified,
regulated data representation.

Pervasive sensing and computing in the IoT is facilitated
by learning and reasoning within applications to appropriately
transform input data into output context and actuation. For
example, when streaming data from human subjects, slid-
ing windows of the continuous data must be smoothed and
preprocessed before inputting into an analytic or modeling
framework. K-means clustering is a prevalent way to auto-
matically relate low-level data into high-level context [14].
Reinforcement learning (RL) invites users who are already
involved in sensing and actuation to reinforce and guide the
system towards better accuracy and intuitive actuation. Madhu

et al. [17] use constraint reasoning to describe a daily plan and
RL to find optimal customized reminders for a cognitively or
orthotically impaired user. Rashidi et al. [3] perform unsuper-
vised learning over low-level sensor event sequences to extract
patterns that represent high-level activities. They focus on a
specific implementation for the smart home over a known set
of activities, but we propose a framework and algorithms that
can perform a similar level of data translation and actuation
in a domain-independent manner.

The goal of the IoT application layer is that it provides
an interface between sensing and actuation in the IoT. A key
takeaway is that applications operate in a dynamic space:
mobile sensing devices (e.g. wearables) and compute units
(e.g. mobile phones) enter and leave the domain of a particular
application [19]. Some leverage ontologies to provide platform
independent organization of applications: black boxes that
transform input data into output data for a specific application
[20]. Perera et al. [1] reinforce this view, providing a com-
prehensive overview of context-aware applications covering
fifty publications over the last decade. They view applications
as multi-input, multi-output (MIMO) units composing similar
data transformations to obtain output context information.

We identify three major challenges with the current view: 1)
There is significant processing redundancy: different applica-
tions using the same input may repeat the same computation.
For example, user occupancy data serves both home security
and grid automation applications, and may be independently
computed by both. We instead expose the output of this
computation for reuse. 2) The complexity of IoT applications
grows rapidly with input and output spaces. This in turn
increases the computational cost of machine learning (ML)
algorithms, whose complexity is dominated by the number of
inputs. This in turn forces application-specific implementations
that cannot be reused. By reducing the number of inputs per
functional unit and enforcing a single-output approach, our
approach facilitates the use of ML. 3) Without effective reuse
of data and functionality, the scalability of IoT applications is
severely limited. Large application functional units (see Figure
1 (a)) preclude a general approach to distributed computation,
modularity, and reduction of complexity. Our approach fo-
cuses on modularity, which in turn creates applications that
can be readily distributed or parallelized.

III. CONTEXT-ENGINE DESIGN

We design smart health applications as a hierarchy of
common multiple-input-single-output (MISO) functional units
called context engines to improve reasoning and scalability
while reducing the data redundancy across applications, and
accomplishing the same functionality as the previous mono-
lithic multi-input multi-output (MIMO) units. In exposing
intermediate data and making applications share them (Figure
1b), we reduce the complexity and improve the scalability of
other applications in the larger infrastructure. The improve-
ment in scalability may come at the cost of accuracy, but we
quantify the error and show that it can be minimized by the
simple expedient of intuitive design in our initial work [13].

IoT applications consume data about both physical and
virtual system entities. This data, from heterogeneous sources
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(a) The state-of-the-art: monolithic MIMO implementation

(b) Our implementation: Applications publish intermediate context
for reuse. MISO functional units perform general statistical learning

Fig. 1: Red represents developer effort; green represents gen-
eralized data transformation provided by our system

including sensors, social media, and even manually submitted
by users is raw and noisy requires processing by applications
to be filtered and distilled into usable information. Addi-
tionally, from the input data, applications need to extract
context: high-level abstracted data. In the IoT, context tends
to be human-centric classifications (e.g. location, activity) that
are important to many different applications [21]. Black-box
implementations of applications from raw data to output mask
both types of processing output (preprocessing and common
intermediate context) from other applications, which leads
to redundancy in computation. Our proposal of a hierarchy
of functional units in place of monolithic implementations
trades off compactness for versatility. A hierarchical approach
breaks down a single application into multiple functional units,
increasing organizational complexity, as shown in Figure 1b
compared to Figure 1a. Although serializing the process can
increase latency if a highly compact algorithm was expanded,
it can also expose intermediate output for reuse by other
applications, thus reducing compute redundancy in the system.
We previously proved that such an approach decreases overall
compute complexity and improves system scalability for data
processing that exceeds 2nd-order complexity (please see our
previous work for more details [13]). As we show in our case
studies later in this paper, even the simplest applications ex-
ceed quadratic complexity when machine learning is involved.
We also provide a detailed analysis of preserving the accuracy
using our approach in our previous study [13]. Additionally,
splitting single-step applications into small functional units
(each with fewer inputs, simpler logic) facilitates a generalized
data transformation through machine learning.

We leverage ontologies to specify the interfaces to each
of the context engines [13] and, uniquely, to also drive data

transformation. We define a context variable as the individual
input or output data unit, and leverage the variable’s space
representation of ontologies to define the domain/range of the
variable, and subsequently, the context engine:

• Discrete context variables must have a countable set
of possible states. This is a requirement for the data
processing algorithms to map to input or output states

• Continuous context variables require a range of possible
values, to allow the algorithms to perform clustering
over this range. Different ontologies make allowances for
multi-interval and other continuous representations.

While current monolithic applications may have internal
modularity and parallelism, they are hidden from the rest of
the system. The MIMO implementation of a current IoT appli-
cation can be explicitly broken down into several context en-
gines, which decompose its internal functionality into smaller,
MISO functional units. The composition of the context engines
delivers the same outputs as the original application (Figure
1(b)). This reduces the complexity of each context engine,
as each performs less processing than the single-stage engine,
and improves the scalability, as each requires fewer inputs and
produces fewer outputs. For IoT applications, this increases
the overall versatility, as the now-visible functional units
and the resulting dependency graph can be deterministically
or automatically distributed and parallelized among available
compute nodes by the IoT management system. Finally, the
intermediate outputs of the distributed approach provide ad-
ditional context that can be reused by other applications,
reducing their computational complexity and consequently the
compute redundancy of the system at large.

Generalized Data Transformation: Our approach, a mod-
ular multi-stage context engine, results in more functional
units (FU) per application. An important consequence is that
each FU that composes the application is a simpler translation
of input data to a single output. This enables the use of a
general data transformation in each context engine in place of
application-specific code. Thus, a context-aware application
can be created by specifying the inputs and output of each
FU alone, and allowing the data transformation algorithm to
incur the processing overhead generating and training a model
based on input and output observations.

We leverage the ontologies that are already present in the
current state of the art of IoT middleware. From a data
standpoint, they regulate inputs and outputs of applications.
Applications that participate in the system must enforce the
ontology’s specification: discrete variables must provide a set
of possible states to populate the probabilistic condition tables;
continuous variables must specify a valid range of values that
can be clustered. We can exploit this ontological information
for machine learning algorithms that clusters results based
on the space of the input and output variables, as well as
determines the training space and list of prior observations.

Matrix-based stochastic learning models express potential
data dependencies as a system of equations. Some use prede-
fined notions about the inputs to establish linear or nonlinear
equations, while others start with a linear combination of the
inputs with unknown coefficients. Over time, observed input
and output data is gathered until the coefficients can be trained
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and a model generated. Since complex relationships can exist
among the input data for an IoT application, and a purely
linear model may not be sufficient [22], several works [23]
[24] [25] implement learning by considering higher orders and
time correlation. In our current implementation, we leverage
TESLA (Taylor Expanded Analog Forecasting Algorithm), a
statistical learning model that can be fully generalized, as the
data translation algorithm in our context engine. It provides
efficient model generation: O(nα), where n is the number of
inputs and α is the function order of the Taylor expansion. The
generic function of this expansion is established as follows:

n∑
i=o

Cixi (1storder) (1)

n∑
i=0

i∑
j=0

Cijxixj (2ndorder), etc. (2)

where Cij represents coefficients learned with observations,
and x0 = 1 (the constant factor). The resulting equation is
Ax = B, where A is the matrix of input observations; x
is the vector of coefficients, and B is the vector of output
observations, each entry correlating with the corresponding
row of A, and solved by least squares estimation. Higher
function orders are able to represent more accurate correlations
between input variables, but they require exponentially more
training samples with respect to α for example, 1st-order
(linear) functions only require n samples, whereas 2nd-order
functions require n2 samples.

We use TESLA in our study for its versatility, but other
statistical learning approaches such as Bayesian Networks
[26], Hidden Markov Models (HMM), and Artificial Neural
Networks (ANN)[24] can be substituted as the learning algo-
rithm in other context engines. We select algorithms that have
low-enough computational complexity to run on the devices
found in the smart health infrastructure: embedded sensing
systems, local aggregators (health monitoring gateways), and
the mobile devices patients and providers use for monitoring.

IV. CASE STUDY 1: OCCUPANCY DETECTION

Our first case study demonstrates the context engine ap-
proach and investigates an application that is extremely useful
to smart cities and smart health-care domain: occupancy
detection. In a smart health-care application, it is very im-
portant to know the presence of a person in a specific
room/environments without their input. Our approach presents
a unique opportunity: to train and learn the behavior of
different people/residences using a shared infrastructure.

A. Context Engine Setup

Input Data: For input data, we use plug load information
from appliances. With the advent of smart metering and
techniques such as residential energy disaggregation, obtaining
appliance- specific information is relatively straightforward.
We use the MIT Residential Energy Disaggregation Dataset
(REDD) [27] hertz-scale energy traces for each appliance.

Application: We aim to translate commonly available plug
load data into room-level user occupancy. Determining this

output is very useful for smart health applications (locating
potential health hazards), and the distributed nature of the
problem (different models for different rooms) empowers the
use of multiple context engines.

Context Engines: In order to go from plug loads to
user activity, we break up the problem into two steps 1)
determining appliance usage and 2) determining user activity
based on 1). Figure 2 illustrates both the sequential context
engine configuration (a) and the single-stage application (b)
to determine output context. For a set of n appliances and
m rooms, there is a set of n context engines. Each first-
stage context engine is a single-input, single-output (O(1))
engine consuming the raw power data from its corresponding
appliance as input, and trained on human-observed binary
output on appliance activity. The second stage transforms the
output of all the first-stage context engines (active appliance
usage) to a binary representation of whether or not a room is
being actively used. These second-stage context engines, with
n inputs, have a complexity of O(n) for generating the output
context, where a is the functional order. The single-stage,
consolidated application represents the current state of the art,
taking in the same input to produce the same output. It will be
used for comparison of scalability, complexity, and accuracy.
In this case, the single-stage application has a complexity of
O(nα). We use up to 172,800 appliance samples (2 days’
worth) from REDD, and test against 86,400 (1 day) samples.

B. Results

The sequential context engine consists of n 2nd-order
context engines for the first stage, each consuming one input
(appliance raw data) and producing binary appliance usage
context. The second stage has m 2nd context engines, one
for each room, with n inputs, from each first stage engines.
The result is n ∗ O(1) complexity for the first stage and
m ∗ O(n2) for the second stage, and an overall complexity
of O(m ∗ n2). The single-stage version has exactly the same
configuration as the second stage alone and consequently, the
same complexity, at O(m ∗ n2). At the same complexity, our
approach improves execution overhead. Each context engine
iterates when a new input observation is recorded. However,
the second stage sequential context engine reacts only to
changes in binary input data, which is much less frequent than
the corresponding changes to the raw data. Table I highlights
the number of computations performed in the single-stage
and sequential context engines for the fridge. The sequential
application performs more individual computations because
there are more context engines, but it exhibits only 31%
of the latency of the single-stage context engine despite
the additional throughput. This is because of the nature of
the computations: the sequential context engine offloads the
processing of raw data to the low-overhead (O(1)) first stage.
The single-stage context engine has to perform over 73000
O(n2) computations. The sequential application requires only
23% of the intensive O(n2) computations as the single-stage
one, and thus, can complete the work 69% faster.

Then, we investigate the accuracy changes, with increasing
functional order, and more training data available. Figure 3
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(a) (b) 
Figure 4. (a) Sequential context engine applications and (b) consolidated applications for in-room occupancy prediction. 

Artificial Neural Networks (ANN) can leverage input and 

output domain spaces to conditional probability models and 

parameters that define preferred paths [21]. 

C. System Usage 
The context engine architecture we propose incorporates 

both modularity and general data transformation, significantly 

reducing application-specific and implementation overhead. In 

addition to the overall application input and output context 

variables, we must identify the data flow and intermediate 

context required by the additional functional units. Existing 

context engine outputs that match the input needed by the 

application, that engine will be reused rather than defining and 

generating a new one. For example, Figure 4 identifies the 

context variable for GPS location for a particular object 

(“User1”) using the context modeling language (CML). 

 
Figure 5. Ontology spec. for GPS data, with coordinates, source, and range. 

If this variable specification is present, an application that 

require GPS location for that object can simply refer to this 

variable as input. If this variable is populated in the data store, 

either by a sensor or as the output of another application, 

changes to this variable will be applied. In particular, if 

deriving location is intermediate context from another 

application, it is now exposed for reuse without additional 

processing overhead by the current application. Intermediate 

context variables that are not already defined must be outlined 

using the ontology, specifying both the data source and the 

domain or range for input or output, respectively. Currently, 

ontological definition of inputs and outputs allows 

applications to retrieve and output data to the backend 

infrastructure. As we mentioned in III.B, we additionally use 

ontologies to generate the constraints for the statistical 

learning algorithms. The application designer simply specifies 

the input and output ontologies for each context engine. The 

common data transformation records observations until there 

are enough to train the functional model for the order of 

computation, at which point it begins generating the output 

context for each successive input observation set. 

IV. CASE STUDY I: RESIDENTIAL OCCUPANCY 

Our first case study demonstrates the context engine 
approach and investigates an application that is useful to two 
IoT domains: the smart grid and smart environments. User 
occupancy and activity is used in these domains for plug load 

prediction and actuation, respectively. Residential spaces 1) 
have not seen the same automation as commercial and 
industrial sectors, and 2) represent hundreds of millions of 
consumers with different behavior and small individual energy 
contribution but a significant grid share. Our middleware 
presents a unique opportunity: to train and learn the behavior 
of different residences using the same infrastructure. This 
information can be used as the intermediate context for both 
domains. Our application aims to identify active user presence 
in a room from plug loads using context engines. 

A. Input Data 
For input data, we use plug load information from 

appliances. With the advent of smart metering and techniques 
such as residential energy disaggregation, obtaining appliance-

specific information is relatively straightforward. We use the 
MIT Residential Energy Disaggregation Dataset (REDD) [23] 
– hertz-scale energy traces for each appliance. Our input 
context variable definition is as follows: {appliance-name: 
string; appliance-power: double}. 

B. Application 
We aim to translate commonly available residential data, 

plug loads, into room-level user occupancy. Determining this 
output is very useful for grid energy prediction and for smart 
home automation, and the distributed nature of the problem – 
different models for different rooms – empowers the use of 
multiple context engines. 

C. Data Translation and Outputs 
In order to go from plug loads to user activity, we break up 

the problem into two steps – 1) determining appliance usage 
and 2) determining user activity based on 1). We design a 
context engine with these respective outputs: {appliance-
name: string; appliance-active: boolean} and {room-name: 
string; user-active: boolean}. 

D. Context Engine Setup 
Figure 5 illustrates both the sequential context engine 

configuration (a) and the single-stage application (b) to 
determine output context. For a set of n appliances and m 

Fig. 2: (a) Sequential and (b) consolidated single-stage applications for in-room occupancy prediction

Refrigerator Number of computations Total latency
1st stage O(1) 2nd stage O(n2)

Sequential 73428 17376 0.42 sec
Single-stage - 73428 1.34 sec

TABLE I: Execution overhead based on iteration count for the
context engines associated with the refrigerator

 
 

rooms, there is a set of n context engines. Each first-stage 
context engine is a single-input, single-output (O(1)) engine 
consuming the raw power data from its corresponding 
appliance as input, and trained on human-observed binary 
output on appliance activity. The second stage transforms the 
output of all the first-stage context engines (active appliance 
usage) to a binary representation of whether or not a room is 
being actively used. These second-stage context engines, with 
n inputs, have a complexity of O(nα) for generating the output 
context, where a is the functional order. The single-stage, 
consolidated application represents the current state of the art, 
taking in the same input to produce the same output. It will be 
used for comparison of scalability, complexity, and accuracy. 
In this case, the single-stage application has a complexity of 
O(nα). We use up to 172,800 appliance power samples (2 
days’ worth) from REDD, and test against 86,400 (1 day) 
samples. 

E. Results 
Complexity: the sequential context engine consists of n 

second-order TESLA context engines for the first stage, each 
consuming one input (appliance raw data) and producing 
binary appliance usage context. The second stage has m 
second-order context engines, one for each room, with n 
inputs, one from each first stage. The result is n*O(1) 
complexity for the first stage and m*O(n2) for the second 
stage, and an overall complexity of O(m*n2). The consolidated 
context engine has exactly the same configuration as the 
second stage alone and consequently, the same complexity, at 
O(m*n2). At the same complexity, the sequential approach 
improves execution overhead. Each context engine iterates 
when a new input observation is recorded. However, the 
second stage sequential context engine reacts only to changes 
in binary input data, which is much less frequent than the 
corresponding changes to the raw data. Table 1 highlights the 
number of computations performed in the single-stage and 
sequential context engines for the fridge. The sequential 
application performs more individual computations because 
there are more context engines, but it exhibits only 31% of the 
latency of the single-stage context engine despite the 
additional throughput. This is because of the nature of the 
computations: the sequential context engine offloads the 
processing of raw data to the low-overhead (O(1)) first stage. 
The single-stage context engine has to perform over 73000 
O(n2) computations. The sequential application requires only 
23% of the intensive O(n2) computations as the single-stage 
implementation, and consequently, can complete the work 
69% faster. 

 
Table 1. Execution overhead based on iteration count for the context engines 
associated with the refrigerator 

Refrigerator Number of computations Total Latency 1st Stage 𝑶(𝟏) 2nd Stage 𝑶(𝒏𝟐) 
Sequential 73428 17376 0.42 sec 

Single-Stage -- 73428 1.34 sec 
 

 
Figure 6. Accuracy comparisons of the first stage context engine against 
different training set sizes and functional order. 

Accuracy: In reducing compute overhead, we must also 
consider the accuracy of the sequential application and the 
single-stage application. We first investigate the accuracy 
changes as the functional order is increased, and when more 
training data is available. Figure 6 shows accuracy 
comparisons on the first stage of the context engine for the 
microwave. There is a clear correlation between increasing 
functional order and accuracy, since the complex relationships 
between the inputs and output are described more completely 
with higher functional complexity. Similarly, error decreases 
with an increasing training set, as issues with underfitting the 
function to the inputs and output are mitigated with more data. 
Other appliances showed similarly low error counts with our 
chosen order (2nd) and training set (2 days). 

We now investigate the output prediction error in Table 2. 
Error is calculated based on the percentage of instances where 
the model-derived boolean output differs from the expected 
output value. Table 2 depicts this error for kitchen-related 
appliances. These appliances were trained with 10,000 unique 
observations culled from 2 days’ worth of data, and 
demonstrate low error near-unanimously. 
 

Table 2. First-stage error of appliance models for 2nd-order context engine 

Appliance Output Prediction Error (%) 
Kitchen Outlets 2 32.8% 
Kitchen Outlets 3 1.4% 
Kitchen Outlets 4 0.6% 
Microwave 4.0% 
Oven 01 1.4% 
Oven 02 1.4% 
Refrigerator 0.8% 
Stove 0.0% 

We now investigate the output accuracy of both the 
sequential and the single-stage implementations of the same 
application. An important consideration is that the sequential 
application contains more opportunities for training, as each 
context engine can be trained individually. For example, the 
kitchen activity-detection application contains 9 individual 
context engines (8 first-stage engines listed in Table 2 and 1 
second-stage engine that takes in all those outputs and 
translates them to the kitchen activity output), each that can be 
trained independently. Conversely, the consolidated 
application has only one context engine (see Figure 5(b)). If 
we train each context engine in both applications with the 
same number of inputs, the sequential will consume and train 
on 9x the data of the single-stage. Alternatively, we can train 
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Fig. 3: Accuracy comparisons of the first stage context engine
against different training set sizes and functional order

shows accuracy comparisons on the first stage of the context
engine for the microwave. There is a clear correlation between
increasing functional order and accuracy, since the complex
relationships between the inputs and output are described
better with higher functional order. Similarly, error decreases
with an increasing training set, as issues with under-fitting the
function to the inputs and output are mitigated with more data.
Other appliances showed similarly low error counts with our
chosen order (2nd) and training set (2 days).

We now investigate the output prediction error in Table
II. Error is calculated based on the percentage of instances
where the model-derived boolean output differs from the
expected output value. Table II depicts this error for kitchen-
related appliances. These appliances were trained with 10,000
unique observations culled from 2 days’ worth of data, and
demonstrate low error near-unanimously.

Appliance Prediction Error (%) Appliance Prediction Error (%)
Kitchen Outlets 2 32.8 Oven 1 1.4
Kitchen Outlets 3 1.4 Oven 2 1.4
Kitchen Outlets 4 0.6 Refrigerator 0.8
Microwave 4.0 Stove 0.0

TABLE II: Prediction error for 2nd-order context engine

We now investigate the output accuracy of both the se-
quential and the single-stage implementations of the same
application. An important consideration is that the sequential
application contains more opportunities for training, as each

context engine can be trained individually. For example, the
kitchen activity-detection application contains 9 individual
context engines (8 first-stage engines listed in Table II and
1 second-stage engine that takes in all those outputs and
translates them to the kitchen activity output), each that can be
trained independently. Conversely, the consolidated application
has only one context engine (see 2b). If we train each context
engine in both applications with the same number of inputs,
the sequential will consume and train on 9x the data of
the single-stage. Alternatively, we can train the sequential
application such that the total number of trained observations
matches the consolidated application, that is, provide each of
the 9 context engines with 1/9 (10000) unique observations
over 2 days compared to the single-stage (90000 unique
observations, 7 days). We investigated both cases: training
each context engine with the same number of observations
(row 1) and training the overall application with the same
number of observations (row 2). Table 3 compares the results
of the two engines for the kitchen:

Application type Prediction Error (%)
Sequential (same # obs/context engine) 2.4
Sequential (same total # observations) 34.3
Single-Stage 17.4

TABLE III: Output accuracy comparison for Kitchen Activity
between the sequential and single-stage context engines

The preprocessing in the first stage and discretization of
the raw appliance data results in significantly reduced (15%)
error in the second stage. When relying upon the same total
number of observations, the single-stage application provided
better accuracy because sequential application’s context en-
gines undersampled and aggregated noise and error in the
second stage. As more input and output observations are
accrued, the sequential context engine improves its prediction
to 2.4%, while the single-stage application, which only allows
additional training on the output variable, only improves to
12.3%. The coefficients show that the additional training of
intermediate context improved the output accuracy.

V. CASE STUDY 2: USER ACTIVITY

Determining a user’s health can be highly dependent on
his/her physical activity [6]. We investigate both applications
that output user activity predictions and applications that use
activity information to provide output actuation for a particular
space/domain. The latter application is used to determine the
potential for a location to be used for activity or exercise.
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A. Context Engine Setup

Input Data: We operate on the UCSD Personal Activity
and Location Measurement System (PALMS) dataset [28].
With the prevalence of wearable and mobile fitness trackers,
this dataset provides a comparable means of high-fidelity
wearable data: sub-hertz GPS and heart rate data, and 30Hz
data from wrist and hip accelerometers for 40 individuals over
a week, with the actual activity annotated through observation
of the individuals throughout the timeframe. The activities
fall into four categories: the activity itself; the posture of
the participant; whether it constitutes social interaction; and
indoor/outdoor. The activity itself is chosen from a set, in-
cluding eating, TV, leisure, sports, exercise; while posture and
indoor/outdoor are additional binary values associated with but
not mutually exclusive to each activity.

Applications: We considered two different connected health
applications that could take advantage of both wearable
personal monitoring and available spatial monitoring. The
user-centric application is activity prediction, translating the
raw sensor data from each particular into meaningful high-
level activities for human-readable record-keeping and medical
analysis. The second application is space-centric. We make use
of the same wearable personal data to track available user heart
rates, correlated to the location, and compute that location’s
potential of raising any given user’s heart rate. This can be
publicized to new users entering the system, as a suggestion
for where they can go to improve their heart rate (the gym,
as an obvious example). A potential extension is to keep track
of certain activities, and make recommendations of healthy
activities in a particular space.

Context Engines: Current state of the art applications
use all the available data as input, and produce the activity
potential and activity prediction. Our approach modularizes
the problem into three sets of context engines: generating
coarse GPS location, detecting activities, and identifying the
activity potential for each location. In keeping with the MISO
principle, we allocate a separate context engine for each
perceived activity. Also, we assign activity detection context
engines for each of the 40 users of the application, leveraging
the availability of compute units on each user’s fitness trackers,
capable of computing personalized activity detection.

Secondly, as GPS information is important to each appli-
cation, but the raw GPS data is too fine-grained for either
application, we introduce a GPS context engine, which out-
puts a coarser latitude/longitude reading representing a larger
physical space. The reference data to train this context engine
is derived by spatially clustering the raw GPS data and using
the northwest point of each cluster. The output prediction is a
boolean value whether or not an activity is detected. Similarly,
a location’s activity potential is a boolean. Both values are
trained using the available annotated data, or ground truth,
from the PALMS dataset.

Figure 4 illustrates the selected configurations for both
the sequential context engine (a) and the state of the art
single-stage application (b). In the former, the GPS context
engine’s output supplants the raw GPS latitude/longitude data
in both applications, though each activity’s context engine still
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Fig. 4: Context-engine applications

requires the speed and number of satellites found from the
raw GPS data. The second stage transforms the available input
from the original data sources and the GPS engine to a boolean
representation of the respective activity. While Figure 4 shows
a fixed number of inputs, the number can vary depending
on the data available from each fitness tracker. Finally, the
third stage is the primary location potential application. It only
uses intermediate data produced by the other context engines
(including feedback from itself). While the data from the GPS
context engine and the feedback are fixed, it is possible for the
activity detection context engines to grow in number as more
activities are added to the system. The compute complexity is
O(knα), where k scales with the number of activities that are
detectable and α is the function order.

For each activity’s context engine, trained with a different
input and output set, we observed the varying output accuracy
using 1st-, 2nd- and 3rd-order functions under the TESLA
algorithm. Each context engine was then finalized at the lowest
functional order that yielded marginal accuracy improvements.

B. Results

Both of the subsequent context engine applications use
the GPS context engine in their first stage, as its output is
consumed by following stages. The single engine was tested
across different functional orders of the TESLA algorithm.
As the data processing is a linear function, it performs well
with first-order (O(1) complexity), gaining only marginal
improvements for second- and third-order functions, with a
mean absolute error of 5%, as shown in Figure 5.

The context engines for the various activities are used by
both applications, and vary in complexity. Some activities
(indoor 1st order; sedentary, biking, exercise, in-vehicle 2nd

order) are more readily predictable than others (walking,
watching TV, eating 3rd order). Figure 6a shows the change in
the mean absolute error for different functional orders. Some
activities have highly similar output given the available sensor
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Fig. 6: Results for the first case study

data, and require a more complex function to differentiate them
from others. For example, eating shows marked similarities
to indoors, and can report false positives even at 3rd order.
Furthermore, some activities are highly correlated with sensor
inaccuracy: walking incurs accuracy issues due to reduced
GPS reliability. Other activities can be determined with lower
function order: for example, determining that the user is
indoors can be determined with just a 1st-order function.

The final stage of the sequential context engine approach
is the location potential context engine. It incorporates the
activity potential for the nearest known location found in the
datastore (Figure 4). This last input dominates the results,
and a second-order function, O(n2), is sufficient to generate
accurate output (9.2% MAE). Contrastingly, the single-stage
approach requires 3rd-order TESLA algorithms O(n3) for
each application to produce the same outputs.

Since the context engines in the sequential approach are
composed to form applications, each later stage will only react
to changes in the relatively high-level output of the previous
stages. This results in the more complex 2nd and 3rd stage
context engines performing fewer total operations than the
single-stage approach. The modularized functional units of-
fload the processing of raw GPS to the low-overhead, very fast
(O(1)) GPS context engine. The single-stage context engine,
however, has no choice but to perform O(n3) computations

In Vehicle
Prediction

Number of computations Total
Latency1st stage O(1) 2nd stage O(n3)

Sequential 3670 1823 0.24 sec
Single-stage - 3670 0.37 sec

TABLE IV: Execution overhead based on iteration count for
the context engines associated with the In-Vehicle activity

Function Order (Context Engine Applications) Normalized Latency
1st (Indoor) 0.38
2nd (Sedentary, Bike, Exercise, In Vehicle) 0.49
3rd (Walk, TV, Eating) 0.65

TABLE V: Sequential application latency vs. function order

for every minor change in GPS data. Table IV highlights the
number of computations performed by the single-stage and
sequential context engines for the 4,000-input (one day) test
set for the In-Vehicle activity. We only present a representative
activity in this table for clarity, but this trend is observable for
other activities as well. Ultimately, the sequential application
requires fewer than 50% of the time- and compute-intensive
O(n3) computations as the single-stage implementation, and
can complete the work 35% faster. This difference in latency
results in a speedup of up to 2.6x. For smart health appli-
cations, this translates to important improvements: reduced
processing latency results in faster response time to critical
situations and timelier reaction to changes in the users’ context
as well as that of their environments. Table V shows the
latency of the context-engine-based applications normalized
against their single-stage counterpart.

We now compare the accuracy of both applications between
the sequential and single-stage counterparts, with the activity
prediction accuracy highlighted in Figure 6b. The context-
engine approach demonstrates very similar accuracy to the
current state of the art, with the highest error difference being
3.3%. The location potential application is an ideal example
for contrasting the context engine from the state of the art,
because instead of using the raw input data, it relies only
on intermediate data the outputs of the activity and GPS
context engines. This is a key motivation for the modular
context engine approach, because we expect to be able to grow
applications from existing data rather than creating entirely
new, independent ones. Despite relying solely on intermediate
data, there is only a 5.7% reduction in output prediction
accuracy: 79.9% for the consolidated approach vs. 74.2% for
the context engines. For smart health applications, accurately
identifying the critical output is important, as it could have
life-threatening consequences. Our approach enables efficiency
in processing and incremental extension of a connected health
suite with little impact on accuracy. As the quality and number
of medical sensors improve over time, an application can
seamlessly integrate more accurate and numerous data to
improve accuracy, rather than redesign and redeploy.

VI. CASE STUDY 3: USER-CENTRIC AIR QUALITY

Another important metric for smart health applications is air
quality, which has connections to respiratory health and asthma
[5]. We investigate an application that uses environmental in-
formation to generate user-centric health-related information.
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While air quality information is useful as a static metric,
it does not directly impact the users throughout their day.
Citisense [5] and other citizen-driven sensing efforts have
provided the ability for users to measure air quality in areas
that they frequently occupy. This information is useful when
consumed in a timely manner, but not when the data or loca-
tion is not relevant to the user. This case study develops and
deploy a user-facing air-quality application that automatically
builds on the collected data from users mapped to the relative
location of the current user. We compare a custom, single-stage
application with our modular context engine approach.

A. Context Engine Setup

Input Data: We operate on air quality data collected
from wearable Citisense sensors, which provide raw parts-per-
million/billion concentrations of NO2, CO, and O3 as well
as the The AQI data is correlated with timestamps and GPS
locations obtained from the wearers’ mobile phones.

Applications: We consider two related applications that
share data: one specific to each user, and one specific to the
spaces in which the users move. The location-centric appli-
cation produces the location’s AQI a value of the location’s
current air quality. The user-centric application produces route
guidance for a user directing their route to a healthier path.
This forms a consolidated IoT environment users whose
sensor data impacts the spaces around them, and conversely,
smart spaces providing actuation to the entering users.

Context Engines: The single-stage approach (Figure
7(right)) takes in all the available data as input, and produces
the AQI and alternate route. Our approach modularizes the
problem into four sets of context engines: generating coarse
GPS location, a time-of-day offset, the current AQI, and
the alternative coordinate. While our initial application has
relatively few inputs to generate AQI, we can include other
related input context variables such as air temperature and hu-
midity [5]. In keeping with the MISO principle, our approach
(Figure 7(left)) allocates a separate context engine for each.
We create an alternative-coordinate context engine for each
user, leveraging the assumption that the users’ devices (which
produce their GPS coordinates) are an embedded system
capable of computing personalized route recommendations.

We reuse the same coarse GPS context engine from the
previous case study, truncating the least significant digit and
having each value represent a larger physical space. An inde-
pendent day offset context engine uses the sensing timestamp
and generates a numeric offset for each day.

The AQI context engine outputs the predicted air quality
at a location at a given time. Typical citizen-driven sensing
depends on the availability of nearby sensor nodes [5], but with
a composition of context engines, we can provide AQI even
if local sensing is not present. We provide a separate output
application that only makes use of the existing infrastructure:
an alternate route (to avoid poor-AQI areas) as a direction
from the user’s current location. Our sample application is
representative of others that can further use this data for
actuation, such as controlling air handlers or duty-cycling
pollutant-heavy machinery to improve a user’s health based on

their sensitivity. Both outputs for our applications are trained
using data from the Citisense dataset [5] as ground truth.

The choice and number of context engines are determined
in the previous section. From this point, building the health
applications is simply a matter of asking health professionals
to specify the relevant inputs and outputs of interest to each
context engine. Figure 7 illustrates the selected configurations
for both the sequential configuration (left) and the state of the
art (right). The single-stage, monolithic black-box implemen-
tations, simply require all the available input data.

The sequential approach can be designed more judiciously.
The GPS context engine’s output supplants the raw GPS
latitude/longitude data in both applications. Each activity’s
context engine requires the current time, one to predict the AQI
at a given time, and the other to direct the user to a different
location. As the GPS context engine has only one input, its
complexity for transforming input data to output context is
constant O(1). The day offset context engine, with two inputs,
has a complexity of O(2α), where α is the function order.

The second stage of the sequential activity application
transforms the available input from the day offsets and the
coarse location engines to a AQI value. Each of these second-
stage context engines have n inputs and α computational
complexity of O(nα) for generating the output context.

Finally, the third stage is the entire location potential ap-
plication, as it only uses intermediate data produced by the
other context engines (including feedback from itself). While
the data from the GPS context engine and the feedback are
fixed, it is possible for the activity detection context engines
to grow in number as more activities are added. The compute
complexity is O(knα), where k scales with the number of
activities that are detectable and α is the function order.

The single-stage consolidated applications are used for the
complexity and accuracy comparisons formalized in previ-
ous sections. They are also run using a generalizable data
transformation that is defined by a polynomial function order.
Since both applications take in all the available inputs, their
complexity is similar to the second-stage context engines:
O(nα). As each context engine uses different inputs and
generates different outputs, we tested each with the TESLA
algorithm up to 3rd-order functions, using the lowest order
after which accuracy improvements were marginal. From the
Citisense dataset, we extracted correlated input data uniformly
distributed over a range. To test the impact of the number of
samples on functional order, we vary the number of samples up
to 8,000 (two days), and test against 4,000 (one day) samples.

B. Results

As each context engine uses different inputs and gener-
ates different outputs, we can test each independently, using
TESLA up to 3rd-order functions, and determining the func-
tional order after which accuracy improvements are marginal.
Both sequential applications use the GPS context engine in
their first stage. As each engine (one for latitude, one for
longitude) only takes a single input, it has a complexity of
O(1). The AQI context engines are used by both applications,
and are implemented by 3rd-order TESLA functions for an
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Fig. 7: The sequential (left) and single stage (right) context application for AQI and alternate routing.

Number of computations per CE Total
latency1st Stage

GPS CE
O(1)

2nd Stage
AQI CE
O(n3)

3rd Stage
Route Rec. CE

O(n3)
Sequential 9793 9351 9351 1.24 sec

Single-stage - 9793 9793 1.49 sec

TABLE VI: Execution overhead based on iteration count for
AQI context engine. Note that CE = Context-engine.

overall complexity of O(n3). The final stage of the sequential
context engine the route recommendation one consumes
outputs generated by the GPS, time, and the AQI context
engines, to generate an alternate route for the input coordinate.
This is implemented as a third-order (O(n3)) context engine.
Each application in the single-stage approach has the same
configuration: a consolidated block with O(n3) complexity.

Even with the same worst-case complexity, the sequential
approach has smaller overhead: all context engines recalculate
their output whenever a new input observation is recorded.
However, the second stage of the sequential context engine
reacts only to changes in coarse location (output from the
GPS context engine), which is much less frequent than the
correspondingly subtle changes to the raw GPS data. Table
VI highlights the computations performed by the single-stage
and sequential context engines for the 10,000-input test set.

The sequential application comprises multiple stages of con-
text engines, which all perform their own data transformations.
This naturally means that, overall, the sequential application
performs more total computations than the counterpart single-
stage approach. However, it exhibits only 83% of the latency
of the single-stage context engine because the sequential
application offloads some processing to the low-overhead, fast
(O(1)) GPS context engine. The single-stage context engine
has no choice but to perform every O(n3) computation.

The impact of these improvements is significant for health
applications, where fast response time is important. From the
results above, for example, the quarter-second delay can be
enough to allow a walking user to enter the poor-AQI space.
The context engine approach only performs the expensive
operations as needed, providing better latency and more timely
response (e.g. only calculating and providing alternate routes
when necessary), and its relative efficiency allows it to be
deployed on smaller, less intrusive embedded devices.

The mean absolute output prediction error (MAE) for the
AQI context engine is 12.3% whereas the single-stage engine
performs worse, with 17.2% MAE. The single-stage applica-
tion, which has to deal with considerably more, finer-grained
GPS locations, is less capable of handling them as accurately.

We also investigate the consolidated route recommendation
application compared to the equivalent sequential context
engine. This is an ideal example for comparison, because
instead of using the raw input data, the context engine relies on
only the intermediate data the outputs of the time, GPS, and
AQI context engines, a key motivation for the modular context
engine approach. The single-stage application suffers the same
issue with maintaining more fine-grained GPS locations, but
has the benefit of all the raw data. The two applications have
comparable accuracy, with 16.2% error for the single-stage,
and 15.9% error for the sequential approach.

VII. CONCLUSION

This paper presents a versatile and flexible approach (con-
text engine) to integrating smart health applications with the
connectivity of the IoT, facilitating the use of machine learning
and improving the complexity of context-aware designs. Our
context engine approach to IoT applications exposes shareable
intermediate context, and increases reusability while reduc-
ing computational complexity. For smart health, this allows
designing more complex health applications with limited re-
sources, using sensors both on the user and in the surrounding
spaces. We implement our approach with three interconnected
case studies, demonstrating the versatility of context engines
(occupancy detection, physical activity detection, and general/
personalized air quality monitoring), as well as up to 65% la-
tency improvements with minimal accuracy loss. This exposes
intermediate context for reuse, and the resulting systems can
be extended and improved as new data becomes available.
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