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Abstract—With the increase in the dependency of our life
on technology and data, smart spaces have become integral
in providing an environment for data collection, analysis, and
machine responses. This paper discusses the current research
in this field and the challenges that arise in the execution
of these smart spaces. We address the major challenges of
hardware design, data analysis and energy efficiency in a new
data aware smart environment that collects time-stamped data
for position, movement, temperature and vibration sensors. Data
collected from these sensors is used to achieve energy efficiency,
for real time localization in conjunction with machine learning
mechanisms to analyze human activities. We evaluate six different
machine learning algorithms for human activity detection task,
on a data set collected in our lab. Results show high classification
performance for all methods giving up-to 99.95% classification
accuracy. We also implemented energy-efficiency measures, lead-
ing to up to 30% energy efficiency improvement on top of
our initial design. This ambient environment, along with data
analytics and improved energy efficiency, provides information
regarding the occupancy and behavior of people within its range.
Spaces such as conference rooms, common areas such as libraries,
classrooms, and even public spaces such as public transport
can benefit from our design. Our system avoids privacy issues
by using no audio/visual devices. This system thus provides an
insight into smart spaces, their current trends, and what future
direction research such as ours would lead them to.

Index Terms—smart space, wireless sensor network, human
behavior, data analysis, machine learning.

I. INTRODUCTION

Smart spaces are environments equipped with sensors and
intelligent devices. They also facilitate data collection, com-
puting, and analysis based on the interaction of humans with
the environment without requiring the occupants of this space
to use or wear any special equipment. Smart spaces have
become popular in the fields of health-care [1] [2], wellness
[3] [4], education [5], safety [6], and commerce [7]. Figure
1 shows an example of a typical smart space deployment,
demonstrating various types of sensors interacting with a
user. Characterization of smart spaces comes from their real-
time data-collection, response capabilities, as well as ease
of deployment. This necessitates the use of wireless sensor
networks in conjunction with the recent Internet of Things
(IoT) solutions. The lack of wiring facilitates easy and fast
installation and helps avoid any electrical rewiring or excessive
remodeling to the existing infrastructure. The real-time data
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Fig. 1 : Typical smart space

collection and analysis is vital for applications in the health-
care and wellness industry; it can enable a quick response
from concerned authorities in case of emergencies. Based on
interactions of the inhabiting humans with the environment, a
person losing consciousness, a person’s pulse changing, or a
similar situation can trigger an alarm. The constant monitoring
and analysis of human-environment interactions can give a
significant insight into behavior patterns in libraries, stores,
museums, and wellness centers. These can, in turn, help
predict customer trends in marketplaces, patient behavior in
emergency rooms, and other future human behavior. They also
help with management of resource such as inventory, staff, and
supplies.

Previous research in this area adopted audio-visual sensor
data to analyze human behavior [8]. However, the compu-
tational overhead due to image and video processing, cou-
pled with concerns about privacy and security, make this
approach unsuitable for most environments. Power manage-
ment for buildings using smart spaces and IoT is another
well researched avenue [9]. The information gathered from
the sensors finds use in effectively managing lights, HVAC
systems, and other such high-power systems. It also can aid
in the reduction of the carbon footprint. Ease of deployment
encourages the use of battery operated sensors, independent
of the existing infrastructure. As a result, energy management
becomes essential to ensure a long lifetime for the system.
Traditionally, energy efficiency is important only in body area
networks or mobile networks, but it is possible to extend the
concepts to smart ambient environments, as these environ-
ments tend to have various sensors and microcontrollers.

In this paper, we discuss various methods by which we
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can address the main design considerations for smart spaces.
These considerations include those described above as well
as the challenges to such systems in terms of response time,
computational overhead and energy efficiency. We demonstrate
the methodologies we have adopted to address these challenges
through our smart space implementation. This implementation
employs a two-dimensional positional grid for localization
and detection of human activity, in conjunction with sensors
to detect motion and vibration for behavior modeling. Due
to privacy concerns, our system avoids audio-visual sensors.
Energy conservation is pursued by the implementation of
algorithms that turn sensors on only when required and in
such a way that integrity of data collection is not hampered.
We observe that our proposed energy efficiency solution gives
30% better energy consumption than a system without energy
considerations, and approximately 10% better performance
than traditional algorithms. We localize user and classify user
activities using low overhead machine learning methods. We
show that support vector machine (SVM) algorithm gives the
best result with 99.95% accuracy for activity detection.

II. DATA ANALYTICS IN SMART SPACES

As sensor technology improves, the cost of a single sensor
module is decreasing significantly, making it easier for smart
spaces to deploy numerous sensors and collect continuous data
from them. This section shows data collection and analysis
techniques widely used in smart spaces.

A. Data Collection

This section focuses on data collection methods used in
smart spaces. Data collection seeks to collect discrete repre-
sentations of continuous time and space domains, making it
impossible to have a perfect representation of the surrounding
environment using data [10]. Examples data collection prob-
lems include noisy and/or redundant readings [11], and high
power consumption due to frequent readings and/or a lot of
sensors [12] [13].

In smart spaces, many data collection methods rely on
wearable sensors. Chawla et al. [14] collected data from 8
different users for 6 activities using a single wrist-mounted
module. However, wrist-mounted sensors restrict or bias hu-
man movements. Casale et al. [15] used a single chest mounted
accelerometer sensor system to detect human behavior. This
method requires providing each occupant with a wearable
accelerometer. Similarly, Mannini et al. [16] used a single
accelerometer sensor to detect activities. While the system
performance was good, use of accelerometer on waist or ankle
is not practical in areas where the occupants may resist their
use and the occupants continually change.

With the previous drawbacks in mind, some data gathering
projects seek to use data from devices people already carry
with them, such as smartphones and watches. Vaizman et
al. [17] collected labeled data from 60 subjects. However,
to use this system every user needs to install a smart-phone
application and companion application for Pebble Smartwatch.
This still carries the burden of dependency on system users,
ultimately having an intrusive system framework.

Several developments try to avoid the issues of wearable
sensor modules. Luo et al. [18] created a one-dimensional
array of ultrasonic HC-SR04 sensors to detect the number
of occupants entering a stadium based upon the width of a
human body. Using a two-dimensional grid of the same sensor
module, Ghosh et al. [19] collected data and used it combined
with machine learning to detect various human activities. This
activity detection had limited application, as positional data
was the only sensory input.

The privacy of anonymous bystanders in data collection
remains a large concern [20] [21]. Lu et al. [8] developed
an application in which phone’s camera can more reliably
track a person’s steps compared to an accelerometer alone.
However, this requires costly image processing and creates
security concerns, such as unwanted tracking. [22].

B. Data Analysis

This section focuses on common data analysis methods, in-
cluding supervised/unsupervised machine learning algorithms
and deep learning techniques used in the literature to classify
human activities in a smart space.

Property SVM kNN Naive Bayes Decision Trees
Average accuracy Highest High Low Higher
Learning speed Low Highest Highest Highest

Classification speed Highest Low Highest Highest
Noise handling High Low Higher High
Transparency Low High Highest Highest

Handle overfitting High Higher Higher High

TABLE I: Supervised learning algorithms

Supervised learning solves problems in which each data
point has a label. Table I gives an overview of supervised
classification techniques. In smart space settings, Chawla et
al. [14] used support vector machine (SVM), k-neighrest
neighbors (kNN), decision trees and artificial neural network
(ANN) to classify human activities in nine groups. With a
training set of 522 instances, kNN performed best. Davis
et al. [23] used machine learning techniques for activity
recognition in ambient assisted living (AAL) consisting of
a hybrid model of SVM and hidden Markov model (HMM)
which outperformed both SVM and ANN. Cook [24] used
naive Bayes classifier (NBC), HMM and conditional random
field (CRF) model to study human activities. The motivation
behind considering these three approaches is the capability
to handle noise, sequential data, and being able to generate
probability distributions over the class labels. The work created
an ensemble of NBC, HMM, and CRF which outperformed
individual classifiers by more than 8%. Fluery et al. [1]
used SVM in smart homes to classify human activities. The
performance of polynomial and Gaussian kernels for this
task was compared where classification accuracy for Gaussian
kernel was 10.7% better.

Unsupervised learning solves problems with unlabeled
data. Clustering [25] and anomaly detection [26] are two
common examples. Janakiram et al. [27] used Bayesian belief
network (BBN) to detect anomalies and missing data points
in sensor stream data. Zhang et al. [28] used a tree-based
approach to find global outliers in a wireless sensor network
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using kNN. Ide et al. [29] used a variant of kNN called
stochastic nearest neighbors to detect anomalies in their sensor
network. Changseok Bae et al. [30] compared performance of
three unsupervised algorithms k-means, Gaussian mixture and
hierarchical agglomerative clustering. GMM showed perfect
recognition for all activities giving 100% accuracy.

Deep learning has become a very important field with
applications in both research and industry. Neural networks
are the core of the deep learning algorithms [31] where a
neural network with many hidden layers is called a deep neural
network. To use deep neural networks in smart space settings
where energy and computational resources are limited, Yao
et al. [32] developed the DeepIoT framework. In DeepIoT,
commonly used neural network architectures such as fully-
connected convolutional neural networks (CNN) and recurrent
neural networks (RNN) are compressed for use in sensing ap-
plications. Cho et al. [33] used CNN for human activity recog-
nition on data collected from acceleromters and gyroscopes.
CNN outperformed traditional machine learning algorithms,
achieving 94.79% accuracy to classify five activities with raw
sensor data. In another work, Sharma et al. [34] used feed
forward neural network to classify activities.

III. ENERGY EFFICIENCY IN SMART SPACES

Smart spaces rely on easily-deployable and low mainte-
nance wireless sensor networks (WSN) for sensing and data-
collection. For low maintenance, the batteries used in the
sensor nodes need to last several years. To achieve this, smart
spaces need to employ energy efficiency methods. This section
discusses smart space applications and their energy efficiency
requirements; and then shows common energy management
methods used in smart spaces.

A. Smart Space Energy Requirements

Smart space have different energy requirements, based on
their use-cases. These requirements are determined by various
factors such as real-time application deadlines, data transmis-
sion rates, mobility in case of wearable devices, computational
complexity of algorithms, controlled area size, and ability
to expand [35]. We identify these parameters as: security,
mobility, scalability, latency, coverage area, robustness, and
fidelity of data. Table II shows a summary of energy efficiency
methods suitable for various smart space applications (such
as healthcare, public safety, environmental monitoring, and
commercial applications) based on their requirements.

Smart Space
Application Requirements Suitable Energy Efficiency

Methods

Healthcare low latency, mobility, high
fidelity

Transmission control, sam-
pling rate control

Public safety Robustness, high coverage
area

Energy harvesting, topology
control, packet aggregation,
duty cycling

Environmental
monitoring

Robustness, high coverage
area, mobility and scalabil-
ity

Energy harvesting, duty cy-
cling, topology control

Commercial
applications

No life threatening impli-
cations, but low latency
and fidelity desired

Duty cycling, sampling con-
trol, topology control

TABLE II: Energy efficiency methods for smart spaces

B. Energy Management Methods

This section explains the energy management methods most
commonly used in smart spaces and connects them to the
requirements listed in Table II.

Energy Harvesting and Energy Transfer methods are
used where battery capacity is small, but changing batteries is
not feasible because there are many sensor nodes or sensors
are physically inaccessible. It adds to the hardware and makes
sensor nodes bulky. If heavy duty sensors such as microwave
sensors or high-power transmitters are used, the extra hardware
can be an acceptable trade-off [36]. Energy harvesting methods
that can be deployed in smart spaces include solar [37],
thermo-coupled [38], piezo-electric [39], and RF-powered [36]
options. The biggest disadvantage of these methods is the
dependence on the environment. The inconsistent availability
of the physical quantity in any smart space, such as vibration,
makes it an unreliable resource. Hence, this method cannot
guarantee a constant amount of energy harvested. A similar
method of battery repletion is energy transfer. Dost et al.
proposed a method to design mobile hosts [40] for wirelessly
charging the depleted batteries of sensor nodes, using electro-
magnetic waves to charge capacitors.

Transmission Control is used to control transmission
power consumption on sensor nodes. This method essentially
changes the range to which the sensor node can transmit and
thus adjusts connectivity. Transmission power reduction occurs
dynamically and adaptively [35]. Whenever the remaining
battery capacity of a node is low, the node reduces its
transmission power. In response, the nodes in its vicinity with
enough battery capacity, increase their transmission power.
This evens out the battery life of the whole network, reducing
maintenance overhead and increasing the system reliability.

Data Manipulation helps sensor networks reduce the cost
of transmitting data by adjusting the amount of data sent. This
is achieved by manipulating the data at the sensor node and
transmitting only what is necessary. These methods include
sampling rate control and data reduction. The most common
way to manipulate energy usage is to control the data sampling
rate itself. In adaptive sampling, the sampling rate increases
or decreases adaptively, depending on the how frequently data
changes in proportion to data sampling rate. In this method, the
rate depends on a moving window of samples taken previously
[41]. An alternative is to change the sampling rate based on a
probabilistic model, pre-loaded into the sensor node. This is
known as model based active sampling. This type of energy
management adds computational overhead, but it is mostly
negligible compared to the energy saved. In data reduction
methods, instead of taking a smaller number of samples,
transmissions include a reduced set of data.This reduces the
net amount of data through the network, thereby reducing
the power consumption [42]. Data aggregation helps avoid
overwhelming the user with data notifications and helps reduce
congestion in networks. However, the aggregation latency
should be analyzed to make sure that the benefits of this
method is not neutralized.

Topology Control is similar to duty cycling protocols.
Most sensor networks, such as the ones for environmental
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Study Market Energy Efficiency Data Analytics
Wearable
Sensor
Dependency

Non
Intrusive

Ya-Li Zheng et al. [2] Healthcare Included Overview only Yes Yes
Vince Stanford [3] Healthcare Not included Not included Yes Yes

Kiryong Ha et al. [45] Elder care Included Included Yes No
Majd Alwan et al. [4] Elder care Not included Minimal No Yes

Stephen S Yau et al. [5] Education Not included Included Yes Yes
PV Vinu et al. [46] Education Not included Not included Some No

A. Coronato et al. [47] Office use Not included Included Some Yes
Serge Offerman et al. [48] Office use Not included Not included No Yes
Jayashri Bangali et al. [49] Security Included Not included No Yes
Julia Moehrmann et al. [50] Group meetings Not included Included No No

Hammadi Nait Charif et al. [51] Group meetings Not included Included No No
Zobl et al. [52] Group meetings Not included Included No No
Helal et al. [53] Healthcare Not included Included No Yes

Dan Yang et al. [54] Home Not included Included No Yes
Hsu et al. [55] Home Included Included Yes Yes

Alwan et al. [4] Elder care Not included Included Yes Yes
Xiaomu Luo et al. [56] Home Not included Included Yes Yes

TABLE III: Comparison of existing smart spaces in the literature

monitoring or smart stores, are redundantly deployed, which is
exploited by topology control. Even with some of the sensors
turned off, the smart environment can give adequate data.
Sensors are adaptively turned on and off, as the requirements
of the network change [43]. Topology control can be of two
types: location driven, or connection driven. For the location-
driven method, sensor nodes carry out spacial discovery. A
grid forms depending on the location of sensor nodes and
the redundant nodes cycle on and off. Connection driven
control follows a similar strategy, where the redundant nodes
connected to a cluster head cycle on and off.

Duty Cycling is switching certain sensor nodes on and off
based on an algorithm. In this method, a sensor node should
wake-up only when another node needs to communicate with
it. Such a system utilizes a node with two radios. One radio
transmits and receives data while the other is ultra-low power
and used exclusively for wake-up purposes. However, the
added hardware complexity and redundancy of having an
extra radio on the board is undesirable. A modification to
this is the scheduled wake-up protocol, where nodes wake-up
at predetermined times and query one another for data. The
trade-off between power saved and power required for wake-
up and sleep is a critical parameter that decides the maximum
frequency for wake-up and sleep protocols [44]. This is critical
for smart spaces as the effectiveness of duty cycling severely
affects the quality of the smart space application.

In the next section, we focus on full-scale smart space
deployments and compare them in terms of their application
domain, data analytics, energy efficiency, and user interaction.

IV. EXISTING SMART SPACE DEPLOYMENTS

Smart spaces are primarily deployed in the fields of health-
care, public safety, education, agriculture, and workplaces,
as shown in Table III. The capability to decide by learning
from the surroundings differentiates normal spaces from smart

spaces. Sensors used to learn from the ambient environment
plays an important role in deciding the use-case of a smart
system. Sensors are either embedded in the environment or the
environment interacts with a mobile phone or other data col-
lecting devices that the user carry. Cameras and microphones,
placed either on wearable devices or within the ambient
environment, can provide accurate information about the users
but they also lead to user privacy concerns.

Haet et al. [45] proposed a Google Glass based smart
system for elder care which includes energy efficiency and
data analysis. However, it requires wearable technology, a
problem that is particularly pronounced with the elderly. Vinu
et al. [46] proposed a smart classroom model, based on smart
sensors embedded in the room and devices in use. But their
system uses audio/video recording, raising privacy issues. The
work also does not consider energy efficiency or data analytics.
Moehrmann et al. [50] introduced a vision based system for
monitoring in group meetings. They used hidden Markov
model to classify idle, sitting and writing activities of the users.
In a similar work, Zobl et al. [52] detected and recognized
the actions of a single person in a meeting room. Charif et
al. [51] represented a smart meeting room able to analyze
activities of its occupants.They used multiple cameras to track
multiple users using particle filter and method of maximum
likelihood. Despite the good accuracy, video recording created
user privacy concerns, reducing system usability in wide.

Alwayn et al. [4] created a vibration sensing system for
elderly to detect falls. The work does not consider energy
efficiency and provides minimal data analytics. Coronato et
al. [47] created sensor networks for smart offices and smart
homes. The work relies heavily on data analytics, but does not
analyze energy efficiency for frequently used wearable sensors.
Hsu et al. [55] used multi-sensor data fusion techniques
with wearable motion sensing devices. They used machine
learning to classify user gestures with sensor unit in hand. For
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Fig. 2 : Connectivity diagram of our smart space deployment

localization, they placed sensor units on the user’s feet. But
instrumenting the user is not practical for real-life applications.
Yang et al. [54] used multiple passive infrared sensors for
indoor positioning in smart homes whereas Luoet al. [56] used
pyroelectric infrared sensors for both localization and activity
detection in smart homes. In the healthcare domain, Helal et
al. [53] used temperature, motion, and light sensors to build a
smart health platform to analyze and alter behavior of diabetes
patients. They were able to classify patient activities using a
Markov model, with up-to 98% recognition accuracy. Zheng
et al. [2] embedded sensors in daily objects such as mirror,
sleeping bed etc. to collect health information but did not the
collected analyze data.

A mostly unexplored area in previous smart space en-
vironments is the energy efficiency of the system. Non-
healthcare related smart space applications largely neglect
energy efficiency. But, even in non-life-critical applications,
increasing the lifetime of a smart space by decreasing energy
consumption of the sensor nodes, is a desirable attribute,
as it reduces maintenance costs and increases the reliability
of the system. Table III lists and compares the smart space
deployments analyzed in this section. The table shows whether
each smart space deployment includes energy efficiency, data
analytics, wearable sensors, and non-intrusive methods.

In contrast to the existing smart spaces, our smart system
provides an energy-efficient environment, without affecting
the quality of our smart space application, i.e. user activity
detection. We do not require wearable sensors, thus provide a
non-intrusive system. Also, we localize the user and classify
user activities using machine learning algorithms, achieving
up to 99% accuracy in detecting user activities.

V. OUR SMART SPACE DEPLOYMENT

In this section, we first present our smart space deployment
and the design decisions we make, and then demonstrate the
capabilities of our smart space in terms of localization, activity
detection, and energy efficiency.

A. System Setup

We adopt a hierarchical hardware setup as shown in Figure
2 . Plain sensor nodes are the lowest-level in the hierarchy
and they are connected to the cluster heads for data collection
and initial data processing. And finally, cluster heads connect
to the main database, representing the cloud in our system,
where all data is gathered for further analysis and storage.

We select Raspberry Pi 3B as the cluster node for hardware
data collection due to its multitude of I/O pins, computing

Fig. 3 : Block diagram of the data collection hardware

3V3       (+)  1    2  5V         (+)   Description Key 
GPIO2   (*)  3    4  5V         (+)   + voltage  (+) 
GPIO3   (*)  5    6  GND     (0)   Ground  (0) 
GPIO4   (z)  7    8  GPIO14 (z)   Thermal sensor  (*) 
GND     (0)  9    10  GPIO15 (z)   Microwave sensor  (i) 
GPIO17 (x)  11    12  GPIO18 (y)   Ultrasound trigger  (x) 
GPIO27 (x)  13    14  GND     (0)   Ultrasound echo (y) 
GPIO22 (x)  15    16  GPIO23 (y)   PIR sensor  (z) 
3V3       (+)  17    18  GPIO24 (y)      
GPIO10 (x)  19    20  GND     (0)      
GPIO9   (x)  21    22  GPIO25 (y)      
GPIO11 (x)  23    24  GPIO8   (y)      
GND     (0)  25    26  GPIO7   (y)      
DNC  27    28  DNC      
GPIO5   (x)  29    30  GND     (0)      
GPIO6   (y)  31    32  GPIO12 (y)      
GPIO13 (z)  33    34  GND     (0)      
GPIO19 (i)  35    36  GPIO16 (y)      
GPIO26 (i)  37    38  GPIO20 (x)      
GND     (0)  39    40  GPIO21 (x)      

	
Fig. 4 : Raspberry Pi 3B pin connection diagram

power, ease of use, and an on-board Wi-Fi module. Figure 3
depicts how Raspberry Pi (as a cluster head) is connected to
a variety of sensors to collect data. We also show how we
utilize Raspberry Pi pins to communicate with the sensors in
a more detailed way in Figure 4 . The Raspberry Pi creates
a JSON string by collecting data from all the sensors and
sends it to the server (cloud in our hierarchical setup) using
MQTT (Message Queuing Telemetry Transport) client-server
protocol. A python program on the server runs two threads.
One fetches data being published on an MQTT broker by the
Raspberry Pi. The other parses the JSON string to get time-
stamped sensor data and then write to the MySQL database.
Data analytics algorithms then use this data for localization,
activity detection and to achieve energy efficiency. Figure
5 shows our implementation and construction of the data
collection environment, demonstrated in abstract in Figure 3
. The sensors in Figure 5 correspond to the sensor nodes in
Figure 2 , and the two Raspberry Pis act as the cluster-heads.
The database server is located at a different remote location.

We use HC-SR04 ultrasound range sensors to discern the
position of many different objects or occupants in a given
space and their exact location relative to objects such as
furniture, open floor spaces, seating, etc. We observe that the
largest indicator of leaving or entering a room, as opposed
to simply continuing to occupy it, would be the packing or
unpacking of belongings. As a result, vibration-related data
would greatly aid us in predicting when occupants would soon
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Fig. 5 : A panoramic view of experimental setup

(a) Real-time sensor data monitoring (b) Real-time localization

Fig. 6 : Correlating real-time sensor output and localization

leave. To collect this vibration data, we employ piezoelectric
sensors. Data collection related to motion sensing is useful
for supplementing the positional grid data. Not only does
it aid in correcting positional grid data errors, but it also
allows differentiation between a more robust range of human
behaviors that do not necessarily translate to a change in
position. For example, reading and typing on a keyboard are
the same action when using only positional data, but motion-
sensitive algorithms can still differentiate between them. We
use two types of motion sensors. passive infrared (PIR)
sensors are inexpensive but not very sensitive to subtle motions
such as fingers moving. By contrast, digital microwave sensors
(model: SEN0191) are more expensive but allow for detection
of more subtle movements. Finally, thermal sensors (model:
MLX90621) is used to capture changes in the temperature
across the given environment.

The main goal of our system is to localize the person
inside, detect their activity and achieve energy efficiency (with-
out affecting activity detection performance) with intelligent
power switching. We use ultrasonic, microwave, PIR and
piezoelectric sensors for localization and to cycle power only
through active components depending upon occupancy status,
whereas we use thermal sensors only for activity detection in
conjunction with machine learning algorithms.

B. Localization Capability

Localization is one of the most important aspects of ambient
assisted living (AAL), especially regarding elderly care and
health-care applications where it is essential not to instrument
the person to be tracked (for non-intrusiveness purposes). To

assist data collection and monitoring, we design a Python
application to plot all sensor values in real time with time
on the x-axis. When the sensors detect an object, the output is
shifted down from its steady value. The delay between actual
event occurrence and it’s plotting is the same as that of a
packet traveling over a network and a server program decoding
the corresponding value averaging up-to 0.37 seconds. A
sample demonstration of this process is shown in Figure 6
a. We design another application to locate objects within
the smart space. Figure 6 bshows object a localization map
where the chart borders represent our smart environment. To
differentiate between standing and sitting objects at the same
(x,y) position, we use blue and red colors, e.g. if a person is
standing at position (80, 230), a red dot will represent that,
whereas a blue dot represents a sitting person. We mount
X-axis sensor array at different elevations than their Y-axis
counterparts, as shown in Figure 5 , to allow for differentiation
between standing and sitting. We can analyze the functionality
and accuracy of the system by looking at Figure 6 band
Figure 6 atogether. Deflection of sensor y7 and y8 on the
y-axis is occurring due to an object in-front of them (due to
little spacing between sensors, one object might deflect two
sensors). Thus, the y position of the dot is 230. X position is
the output of these two sensors i.e. 80. Now the dot is Red
due to deflection of sensor x1, which is at an elevated height.
This indicates that the person is standing.

C. Activity Detection Capability

In our smart environment setup, we divide activities into
static activities (sitting, standing, sitting on chair, sitting on
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Fig. 7 : Initial sensor placement (side
view)

Fig. 8 : Thermal sensor (front view)
[26] Fig. 9 : Future sensor placement

Activity Sensor Pattern
Enter or leave Ultrasonic sensor and piezoelectric sensor

Sitting, idle
Ultrasonic sensor from Y axis activate, high
values in lower-middle part of thermal sensor
array and microwave sensor

Sitting, working
ultrasonic sensor from Y axis activate, high
values in lower-middle part of thermal sensor
array and microwave sensor activate.

Standing
Ultrasonic sensors from both X and Y axis
activate, high values in the center of thermal
sensor array

Walk around
Ultrasonic sensors array activate sequentially,
changing values in thermal sensor array and
PIR sensors

TABLE IV: Example activities and sensor patterns

ground, laying on ground) and dynamic activities (move right,
move left, move towards the sensor, move away from the
sensor). This section shows how our grid-based smart system
setup detects activities, and then presents accuracy results
for activity detection. Table IV shows intuitive relationship
between sensor output and corresponding activities. In the
remainder of this section, we demonstrate our proof-of-concept
analysis to detect two activities along with a detailed accuracy
analysis using different machine learning methods.

a) Data Collection: We use non-contact thermal sensors
to collect data for activity recognition. These sensors have
120 ◦ horizontal field of view (FOV) and 25 ◦ vertical FOV
with output in 4x16 array as shown in Figure 8 . Since
we cannot construct a high-quality image from such a low
resolution thermal sensor output, user privacy is not exposed.
Each value in 4x16 matrix gives temperature in that area
which was directly fed to the machine learning algorithms
after flattening, without any feature engineering. With a single
sensor placed on the middle of vertical wall as shown in Figure
7 , we capture two activities which are standing (STAND) and
sitting on the chair (SIT). Figure 10 shows the heat-map of
data collected for a person standing and sitting on the chair.
Each sensor gets 4 frames/second, and we collect 111,225
labeled examples in ten days with five users. Class STAND has
49384 labeled examples whereas class SIT has 61841 labeled
examples. To capture more than two activities, in our future

(a) Person sitting

(b) Person standing

Fig. 10 : Activity heat-maps

work, we will increase vertical FOV by installing multiple
sensors, as in Figure 9 with all A,B,C equal to 25 ◦.

b) Data Analysis: We implement and compare the per-
formance of six machine learning algorithms using open
source frameworks SciKit-Learn [57] and TensorFlow [58]:

1. Logistic Regression (LogisticR): This is a binary clas-
sification method estimating the probability of an instance
belonging to a particular class. We use a linear solver with
regularization strength parameter. C=1 and L2 regularization.

2. Support Vector Machine(SVM): SVM which is another
strict binary classifier, extensively used for human activity
classification [59], [60]. Given labeled data, SVM outputs an
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Classifier Accuracy Precision Recall Specificity F1
Logistic 97.83 98.01 98.09 97.50 98.04

SVM 99.95 99.93 99.98 99.91 99.95
DecTree 99.34 99.42 99.39 99.28 99.40
RandFor 99.67 99.54 99.88 99.42 99.70
NaiveB 91.67 91.58 93.19 89.16 92.36

NN 99.44 99.45 99.55 99.31 99.49

TABLE V: Performance metrics for algorithms in (%)

optimal hyperplane which divides current training data and
categorize new examples. We use one-vs-all and one-vs-one
techniques to extend SVM for multiclass classification. We use
SVM algorithm from Scikit-Learn with ”rbf” kernel, ”hinge”
loss and regularization parameter, C=1.

3. Decision Tree(DecTree): Scikit-Learn uses CART algo-
rithm to train decision trees and Gini impurity to check the
quality of classification. CART is a greedy algorithm which
looks for optimum split at top level and repeats the procedure
for all levels. It selects feature k and threshold tk such that it
refines class prediction at each level.

4. Random Forest(RandFor): Ensemble methods combine
predictions from several base estimators reducing bias and
variance. Random forest is an ensemble method with decision
tree as a base estimator and Bagging (Bootstrap Aggregating)
to create different random subsets of the training set. We use
10 decision tress as base estimators.

5. Naive Bayes(NaiveB): Naive Bayes is a supervised
learning algorithm, applying Bayes theorem and assuming all
features are independent. Naive Bayes classifiers are very fast
and differ by the assumption they make about P (X|y) where
X is feature and y is label. Our implementation is based on
Gaussian distribution.

6. Artificial Neural Networks(NN): NN structure is com-
posed of several layers of nodes connected by weighted links.
The behavior of the neural network is decided by it’s depth,
activation functions used, learning rules and architecture itself.
We use a three layer feed forward neural network from
TensorFlow. Number of inputs to the neural network are 64(4 x
16 output of thermal sensor). Each hidden unit has 10 neurons.
We use batch gradient descent optimizer with batch size of
200. With no regularization, we set the learning rate to 0.01
and use activation function leaky relu.

c) Classification Results: To achieve the best classifica-
tion performance, we apply stratified k-fold cross-validation
(with k = 10) technique to each classifier. This reduces the
variance of the resulting estimates because every data point
was only once used in the test set. The performance metrics
we use to compare the performance of different classifiers are
shown in Table V. Since accuracy is not always a good perfor-
mance measure, we also use Precision, Recall, Specificity, and
F1 score. Precision is the accuracy of positive predictions of
the classifier. Recall is the portion of positive instance that are
correctly detected by the classifier. Specificity is the proportion
of negatives that are correctly identified as such. F1 score is
the harmonic mean of precision and recall, giving more weight
to low values. Specifically:

• Accuracy = TP + TN
TP + TN + FP + FN

Predicted SVM Predicted NaiveB
SIT STAND SIT STAND

Actual SIT 61829 12 Actual SIT 56398 5443
STAND 42 49342 STAND 3867 45517

TABLE VI: Confusion matrix. SVM (left) and NaiveB (right)

Algorithm NN LogisticR SVM DecTree RandFor NaiveB
Training time 89.93 10.23 46.45 10.58 6.23 0.156
Test time 0.021 0.002 1.627 0.005 0.018 0.019

TABLE VII: Algorithm train/test time evaluation (seconds)

• Precision = TP
TP + FP

• Recall/Sensitivity = TP
TP + FN

• Specificity = TN
TN + FP

where TP is true positives, TN is true negatives, FP is false
positives and FN is false negatives.

In Table V, we notice a very high accuracy of 99.95% with
SVM whereas naive Bayes classifier gives the lowest accuracy
of 91.67%. For these two methods, we also include their con-
fusion matrices in Table VI. Each row in the confusion matrix
represents the actual classes and each column represents the
predicted classes. For example, in the left table, the number
”61829” corresponds to the data points that actually belong
to the class SIT and that are also classified as SIT using
the SVM method (true positive - TP ). Similarly, the number
”12” in the left matrix shows the data points that are actually
in the SIT class but classified as STAND using the SVM
method (false negative - FN ). Overall, the numbers in Table
VI help us calculate the performance metrics listed above.
Accuracy of machine learning algorithms depends on bias and
variance. Naive Bayes algorithm assumes that data distribution
is Gaussian which introduces bias leading to low overall
accuracy. Ensemble models in most of the cases outperform
the base estimator. Single decision tree gives average accuracy
of 99.34% on 10 folds whereas an ensemble of 10 decision
trees slightly outperform giving overall accuracy of 99.67%.
Deep feed forward neural network with three layers gives
an average accuracy of 99.44% which is slightly worse than
SVM. Even simplest training algorithm of logistic regression
gives 97.83% accuracy.

For the practical deployment of a model, train and test time
of machine learning algorithms are crucial. We evaluate train
(on 90% of an entire data) and test time(on 10% of an entire
data) for all models. Workstation used for bench-marking has
Intel(R) Xeon(R) CPU E3-1270v5@3.60GHz processor and
8GB RAM. Table VII shows the comparison of train and
test time in seconds for machine learning algorithms. Out
of all machine learning algorithms SVM takes the highest
time of 46.45 seconds. Computational complexity for SVM
is O(m2 ∗ n) where m is number of the training examples
and n is number of features. Computational complexity for
decision tree is O(n ∗ mlog(m)), having log relationship
with number of examples leads to faster training. Therefore,
decision tree and random forest takes 10.58 and 6.23 seconds,
respectively. To make predictions, each node in tree based
algorithm requires checking only one feature making time
complexity O(log2(m)). Naive Bayes based model has train-
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Fig. 11 : Energy efficiency algorithm flowchart

ing time complexity O(n ∗m) making it fastest to train, but
with the lowest average accuracy. Training time for a neural
network with three hidden layers trained in 100 epochs with
10 neurons in layer is approximately 90 seconds.

D. Energy Efficiency

In our smart space, we propose a two-fold method to
improve energy efficiency. The energy efficiency methods we
use are based on the type of data we collect: 1) ambient envi-
ronment data and 2) user/subject-dependant data. The former
is for collecting data such as temperature, humidity, vibration,
which provides context for data analysis. The latter involves
data directly related to the subject’s movement, location, etc.
Both data are used for behavior analysis and prediction.
We first focus on the ambient data (temperature, pressure,
vibration, etc.). These are independent of people, prevalent
throughout the smart space, and also not event triggered. For
sensors providing this kind of data, adaptive duty cycling is
an effective way to reduce energy consumption. Thus, in our
cluster based topology, we implement adaptive duty-cycling.
In this method, we calculate the percentage of time intervals
in which there is no change in data (miss-M) and there is
change in data (hit-H). If there are too many misses in a row,
we change to a lower frequency. If a hit occurs, change to a
higher frequency. To control this change, we define a threshold
value, to control the number of redundant readings allowed,
changing the duty-cycle of the system.

To further improve the energy efficiency, we also consider
subject locality in a smart space. After detecting the initial

location of a subject, we do not need to keep the entire set
of sensors active. Instead we can keep a subset active and
adaptively change this subset based on the movements of the
subject. We combine this localized activation of sensors with
adaptive duty cycling mentioned above. Figure 11 shows the
flowchart for the proposed method. To achieve this, we need
to have the physical location matrix of all the sensor nodes
(sensor topology). There are two methods used for the creation
of the location matrix: It can be hard-coded into the system, or
a neighbor location discovery algorithm can be used [61]. The
advantage of having a neighbor discovery algorithm is that it
makes the system scalable and dynamic. If the system uses
additional sensor nodes deployed in the environment, their
incorporation becomes easy. Hence, we choose this method.
The energy can be optimized even more, by adding a duty
cycling algorithm to localized activation, in cases where the
same subset of sensors stays active for a long duration. This
can occur in activities, such as subject sitting idle/working,
standing in same location, etc.

In our system, the response time of an ultrasonic sensor is
40 ms. Both the PIR sensors and microwave motion sensors
have a response time of 0.5 seconds, while it is negligible (2
ms) for the vibration sensors. The data analysis is to detect
human behavior and thus locality within the positional grid
is important. Thus, we turn six sensors ON in the vicinity of
the subject at a time. These include four ultrasonic sensors,
one PIR sensor, and one microwave sensor. The vibration
sensors are collecting ambient vibration data and remain on
at all times. This means that in case of a single occupant,
only one − third of the sensors are consuming power at
a time. This enables the system to save 30% of its power.
As the number of occupants increases, more sensors start
to turn on. This reduces the effectiveness of the localized
activation method, and the main contributor to reducing power
consumption is the dynamic duty cycling. The duty cycling
algorithm needs to take into consideration the response times
of the sensors. The smallest allowable ON time for the duty
cycling algorithm is 500 ms for PIR and Microwave and 40
ms for ultrasonic sensors. To preserve duty cycle uniformity
for all sensors, we take the largest response time which, is 500
ms. This ensures high quality for the data used in analytics.
The energy efficiency algorithm is deployed at the cluster head
level (see Figure 2 as these nodes monitor the overall status
of multiple nodes, hence can decide how duty cycling and
adaptive localization be applied.

To analyze the performance of our energy efficiency
method, we simulate an equivalent of our experimental setup
on NS3 [62]. NS3 is an open source, discrete-event network
simulator to analyze network systems. We create the network
diagram of our smart space, as shown in Figure 2 , in simu-
lation, with a total of 36 sensors and 2 cluster heads, where
the sensors correspond to the lower level of the hierarchy and
cluster heads, represented by Raspberry Pis in our system,
are responsible for controlling the sensor nodes. We model
all sensors as simple WiFi end nodes, with no computational
intelligence using the standard end node configuration in
NS3. Furthermore, for the sensor nodes, we add WiFi station
application, provide a device id for each node, and define the
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Algorithm Energy (J) % improvement
None 37.44 0 (default)

Standard duty cycling 31.45 15.9
Standard topology control 28.08 25

Proposed combination 26.27 29.83

TABLE VIII: Comparison of energy efficiency methods

mobility as stationary (i.e. their location is fixed).
The cluster heads are modelled as access points, using the

WiFi Access Point (AP) node configuration. The basic differ-
ences between the WiFi AP node and the standard sensor node
are the additional computational and routing capabilities. The
routing and sleep/wake-up decisions are made at these cluster
heads. We establish the channel and connection between these
nodes by using Helper APIs provided by NS3. WifiMacHelper
and YansWifiPhyHelper are two sample APIs used in our
simulation. Each cluster head is responsible for determining
the transmission time of any sensor that is connected to it in
the device hierarchy. Hence, there is no interference among
sensors, even though they share the same physical channel.

Finally, we use the standard energy module available in
NS3 for every transceiver node to calculate the overall energy
consumption across all the sensors. In this module, the base
power consumption is 0.1W per transmission considering
default voltage as 3.3V. The energy module has a Sleep
state, representing non-transmission intervals, during which
the power consumption is 0.01W. This energy module is built
considering the standard WiFi transceiver energy consumption,
not considering the energy consumed by the sensing element.
We use this module because reducing the energy consumption
of the sensing unit is not in the scope of our paper. Finally, for
each energy efficiency method, we run 25 simulations. Each
simulation run represents an activity detection session, which
is around 10 seconds.

The results of this experiment are presented in Table VIII.
The first row of this table corresponds to the base case, where
no additional energy efficiency measure is implemented. In
this base case, all sensors stay on and transmit to the access
point each second. The second and third rows show standard
duty cycling and topology control methods, respectively, that
we have described previously in this section. And the last row
is the proposed energy efficiency method for our smart space.
We observe that individual methods can achieve 15.9% and
25% energy efficiency but with the method we choose, the
savings go up to 30% without affecting the performance of
the activity detection application.

VI. CONCLUSION

In this paper, we present a comprehensive study of smart
systems in different application domains with a specific focus
on data analytics and energy efficiency. We consider the major
factors affecting the type of deployment that would be benefi-
cial for a particular application. Based on the results for the de-
sign discussion, we demonstrate the potential use of an energy-
efficient, 2-D grid based smart space for human localization
and activity detection. The proof-of-concept demonstration is
capable of localizing human object and identifying activities

under energy efficiency constraints. We implement six ma-
chine learning algorithms and compare their performances
in terms of activity detection accuracy. Experimental results
reveal that support vector machine classifier performs the
best for human activity detection task with 99.95% average
accuracy. However, the time complexity of SVM has cubic
relation with number of training examples, making it slow
for very large training sets. In contrast, random forest method
results in 99.67% average accuracy, slightly less than the
best, but much faster training time (around 8x faster than
SVM). We also propose a duty cycling and adaptive topology
based energy efficiency method for our system, achieving up
to 30% system energy reduction with no activity detection
performance degradation. Our future work will include more
complex static and dynamic activity recognition, predicting
human behavior based on recognized patterns, and having a
fully dynamic energy efficient system. Our vision is that this
research will expand the application of non-intrusive, non-
wearable smart space environments.
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