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Abstract—Residential energy consumption shows significant 

diurnal patterns that can be leveraged by energy storage devices. 
Batteries can store energy from either local renewable sources or 
from the grid when the electricity is cheaper, and provide it when 
the prices are higher. However, batteries are chemical devices 
and their efficiency and lifetime highly depends on the usage 
patterns.  In this paper, we develop a framework that considers 
the physical properties of batteries, tests the feasibility of a 
battery deployment and finds the best battery types and 
configurations for a particular residential configuration. We 
validate the outcomes our framework through simulations that 
are informed by measurements. Our framework shows that up to 
43% savings can be obtained with batteries, which may be lower 
or completely eliminated if the batteries are not used in specific 
configurations.  

I. INTRODUCTION AND RELATED WORK 

Residential energy consumption constitutes 38% of the 
total energy consumption in the US, with millions of individual 
customers [1]. In this paper, we focus on the demand side of 
the residential domain to minimize the cost of home energy 
use. Unlike the industrial domain, residential systems are not 
heavily automated and are prone to inefficiency due to 
unpredictable user behavior. The advancements in smart grid 
technologies, like smart metering, allow residential energy 
consumption to be monitored and managed more effectively. 
This monitoring enables smarter technologies to be deployed in 
residential domain, e.g. load shifting [2], peak shaving [3], 
voltage regulation [3], energy arbitrage [4], etc. Load shifting 
[2] classifies the demand of a house as deferrable and non-
deferrable and enables rescheduling of the deferrable demand. 
Peak shaving [3] reduces the maximum power draw of a house 
to avoid both peak power charges and circuit tripping. Voltage 
regulation [3] minimizes the voltage deviations, which are 
especially prevalent with the distributed energy generation.  

This paper focuses on energy arbitrage in a residential 
home using batteries. Time-of-use (ToU) pricing is a common 
method used by the utilities, which set cheaper electricity 
prices when the demand is expected to be low and higher 
prices when the demand is higher. Energy arbitrage leverages 
these different energy prices by buying the extra energy when 
the prices are low, storing it in an energy storage device and 
then using the stored energy when the price is higher.  

Several studies [4], [5], [3], [6] have investigated this idea 
in the residential domain and formulated optimization 
problems to maximize the energy cost savings. The amount of 
cost savings depends on how well the price difference can be 
used and the initial deployment cost of the batteries. Previous 

studies formulate the cost savings as the main optimization 
goal and find the capacity that maximizes the savings function 
[4], [5]. Additionally, some studies solve the battery capacity 
problem while including renewable energy from solar [3]. 
Some studies focus on when the batteries should be used to 
maximize the savings [6]. However, battery sizing and usage 
are not decoupled and should not be considered separately. 
Barnes et al. [4] combine battery sizing and scheduling for 
different battery technologies.   

Although the previous studies consider sizing problem and 
battery scheduling, they consider only round trip efficiency 
when modeling different types of batteries, but not the non-
linear battery properties. These properties include how deep 
and how fast the batteries should be discharged. The battery 
lifetime decreases with deeper battery discharges and higher 
discharging current [7], [8]. If the batteries are not used in the 
best possible way, they have to be replaced prematurely, 
resulting in higher system costs.  

In contrast to previous work, we leverage a more detailed 
battery model to obtain the battery configuration for homes that 
have ToU pricing. Battery configuration includes type, total 
capacity, depth-of-discharge and average discharging current. 
We validate our model against battery measurements and show 
that it is within 5% error. Our novel framework uses this 
battery model and obtains a closed form inequality that can 
query the profitability of a battery deployment and choose the 
most beneficial battery configuration. We validate the results 
of our framework with extensive simulation studies using 
measured house data from MIT’s REDD database [9]. As a 
case study, we compare two different battery technologies, 
lead-acid (LA) and lithium-iron-phosphate (LFP), under 
realistic ToU pricing schemes  obtained from California ISO 
[10] and observe that LFP batteries are more cost effective, 
obtaining up to 43% more cost savings.  

II. BATTERY CONFIGURATION STUDY 

This section demonstrates how battery configuration affects 
the battery efficiency and lifetime. We refer to a battery 
configuration as the combination of depth-of-discharge (DoD) 
limit, discharging current, battery capacity and type. The first 
two properties can decrease the battery lifetime significantly if 
they are not adjusted properly. Their effects are highly 
dependent on battery type and capacity, and thus all these 
components should be evaluated jointly. We use state-of-health 
(SoH) metric to quantify the battery lifetime. SoH is defined as 
the maximum deliverable capacity of a battery at a given time 
estimated as a percentage of the initial capacity. We also 



 
Fig.2. Cycle life of LA & LFP 

batteries rated at 20h [18], [19] 
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Fig.1. Effective capacity of 20Ah 
LA & LFP batteries 
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compare two different battery types: lead-acid (LA) and 
lithium-iron-phosphate (LFP). The former is a commonly used 
inexpensive battery type whereas the latter is more efficient but 
also more expensive.    

We use the Coulomb Counting method presented in [8] to 
describe the relation between DoD level and SoH. The effects 
of high discharge currents on SoH are captured using model 
shown in [7].  Peukert’s law [11] enables us to more accurately 
estimate a battery’s effective capacity,     . We use H to 

denote rated discharge time hours and obtain its value 
(typically 20 hours) from the data sheets [11]. Peukert’s 
exponent, k, changes depending on the battery type. For LA 
batteries, the typical value is around 1.15 whereas for LFP 
batteries it is 1.05 [12]. The rated capacity,    , exponentially 
decays with discharging current            as shown below: 
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The capacity loss as the battery is used is modeled by 
scaling the effective capacity with SoH. We also record the 
total depth of discharge at the end of a discharging period 

as          to capture the effect of the current cycle on the 

battery lifetime (see equation 2). 
Figure 1 shows the negative effect of high discharge 

currents on 20Ah LA and LFP batteries. The horizontal and 
vertical axes show the effective battery capacity and 
discharging current respectively. The effective capacity of the 
LA battery decreases faster due to its greater nonlinear 
behavior, represented by a larger Peukert exponent. At 40A, 
equivalent to 2C rate for both batteries, the LFP battery loses 
only 15% of its nominal capacity whereas the LA battery 
capacity loss is more severe, with 42%. 

We update battery SoH after a complete charge/discharge 
cycle [8]. This update depends on the battery type, effective 
capacity and            Deeper discharging periods are 

represented with larger          values and reduce the total 

number of charge/discharge cycles of a battery. We estimate 

the effects of           with a lookup table derived from 

effective capacity graphs similar to Figure 2 that are provided 
in the data sheets   In Figure 2, the horizontal axis shows the 
DoD level for charge/discharge at 20h discharge rate, which is 
defined as the discharging current draining the battery in 20h. 
The vertical axis is on a log scale. It shows the number of 
cycles a battery can sustain a particular DoD level. The 
available number of cycles reduces exponentially with a deeper 
discharge in each cycle.  

We normalize the effect of one cycle with          value 

to capture its effect on the battery lifetime. Battery needs to be 
replaced when its SoH falls below a threshold,           
Battery manufacturers generally recommend 80% for this value 

[13] i.e. the battery has to be replaced if the maximum capacity 
it can provide falls below 80% of its rated capacity. If the 
battery has                 cycles with           value, the 

battery SoH is updated as: 
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This equation normalizes the effect of one cycle with 
         over the battery lifetime and penalizes high discharge 

currents. We validate the accuracy of our model using the full 
battery charge/discharge data available from the NASA Ames 
Prognostics Data Repository [14]. Our model has 4.67% 
average error as compared to measurements.   

III. OPTIMAL BATTERY CONFIGURATION ANALYSIS 

We next define and solve the battery configuration problem 
in a home with time-of-use (ToU) pricing [15]. For this study, 
we assume that the house can be equipped with a battery whose 
configuration, e.g. capacity, discharging current, depth-of-
discharge (DoD) limits, are determined through optimization. 
To simplify the problem, we assume that the residence does not 
have any renewable sources, such as solar or wind. Since a 
majority of homes in the USA do not have any form of 
renewable energy, this is a reasonable assumption. We exploit 
the energy price difference by storing cheaper energy in the 
battery using the stored energy when energy prices are higher. 
When redirecting the energy flow through a battery, we 
consider the conversion losses and nonlinear battery behavior.  

Time of use pricing has a peak price during the day,   , and 
an off-peak price    [4], during the night. As a result, the 
battery is charged during the night and discharged during the 
day, when the energy demand of the house is actually higher. 
Furthermore, we also consider the amortized cost of the battery 
and take that cost into consideration when we decide if a 
battery configuration is profitable. The total energy cost with a 
battery (including the amortized battery cost) should be smaller 
than the energy cost without using a battery.  

We define the energy cost without using a battery: 
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where     is the electricity cost without batteries,      
and 

     
 are average power demand (W) during peak and off-peak 

energy prices respectively;   and    are the durations (hour) of 
peak and off-peak energy price intervals respectively; and    
and    are peak and off-peak energy prices in terms of (ȼ/kWh). 
This energy cost is calculated for a single day. Accordingly: 
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where     is the electricity cost with a battery,   and   are 
battery discharge and charge energy (Wh) respectively. 
Equation 4 subtracts the cost of energy that can be provided by 
the battery and adds the cost of the energy required for the 
battery charge. We add the battery cost to     later separately. 
We calculate    and   as follows: 
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where   is the battery voltage (V),    and    are discharge and 
recharge currents (A),   is the time (h) that battery can 
discharge within the DoD limit,          (%),   is the rated 



battery hour (h),          is the total battery capacity (Ah),   
is the battery efficiency, and   is the Peukert exponent of the 
investigated battery (no unit). Equation 6 leverages Peukert’s 
Law [11] to calculate    and scales the battery output with the 
battery efficiency to calculate the actual energy provided by the 
battery. Furthermore, both    and    are scaled with          to 
account for the depth-of-discharge limit because we may not 
use the total available battery capacity. This formulation also 
assumes that the battery does not power the entire home and its 
output can be combined with the grid in any amount.  

If a battery deployment is profitable, the cost with batteries 
should be smaller than the cost without them: 

             (8) 

If we combine     and    into the above equation, we 
obtain the following simplified inequality: 

(
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where discharging rate is defined in terms of C current and 

calculated as
  

        
. We use 1C current as a reference which 

is defined as the discharging current that drains a battery in one 
hour, e.g. for a 20Ah battery this current is 20A.  

If the battery deployment cost is not considered, equation 9 
gives the feasible battery configuration. An interesting 
observation is that this inequality is independent of the power 
demand of the house. However, there is one other restriction 
from equation 4: 

     
           (10) 

This inequality specifies that the discharge energy of the 
battery cannot be larger than the energy demand during the 
peak energy price interval because the home cannot use more 
energy than its demand.  

In order to calculate the actual savings, we also need to 
consider the amortized battery cost. We update the equation 8:  

                         (11) 

where    is the amortized cost of the deployed battery: 
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The deployment cost of the battery is computed as the 
market price of the battery: 

                                            (13) 

where       is the unit battery cost in terms of $/Ah. We also 
calculate the expected lifetime of the battery with the battery 
configuration defined with             and        . We 
assume that the battery has one complete charge/discharge 
cycle per day:  
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where           is the number of charge/discharge cycles that 
the battery can perform with given DoD value. By combining 
equations 12, 13, 14 into equation 11: 

                         
        

         

                    
 (15) 

The constant    appears as a result of the conversion 
between kWh  Wh and $  ȼ. Equation 15 is the 
generalized version of equation 9. It tests the feasibility 

(nonnegative cost savings) of a battery deployment under ToU 
pricing with a peak and an off-peak price. However, equation 
10 should still be satisfied as a pre-requisite for equation 15. 
The advantages of this closed form inequality are as follows: 

 It is simple and the feasibility of a configuration can be 
tested independently of the energy demand of the house 
(The best configuration still depends on the house demand). 

 It shows the tradeoff between the peak and off-peak energy 
prices and battery unit price. 

 It determines how the battery should be used, e.g. 
discharging current, depth of discharge etc.  

 It can estimate if a battery configuration is feasible before 
the deployment.  

Next, we analyze the critical points of the savings function 
in terms of battery capacity, discharging current and DoD limit. 
We use equation 11 as our savings function and combine 
with    ,    , and    from equations 3, 4, and 12 respectively. 
This savings function calculates the benefits of the battery 
deployment (       ) and also considers the amortized 
initial deployment cost of the battery,   .  

Capacity Analysis: We first compute the partial derivative of 
the savings function and set it to zero to obtain the optimal 
capacity (equation 11). Then, we analyze the capacity for both 
LFP and LA type of batteries, for which the Peukert exponent 
is 1.05 and 1.15 respectively. For both types of batteries the 

optimal capacity is on the order of     Ah or larger. However, 
we also know that the capacity of the battery is limited by 
equation 10. Therefore, with this analysis, we can say that the 
battery capacity can be scaled up to the limit introduced by 
equation 10. The optimal capacity value only depends on the 
power profile of the given house. If the capacity is further 
increased, the savings obtained by exploiting the electricity 
price difference cannot justify the additional battery capacity 
because it is not used. For the power profiles of the homes we 
use in our study, this capacity ranges between 100-500Ah.  

Discharging Current Analysis: The optimization process 
minimizes the discharging current in order to maximize the 
battery lifetime. The discharging current should be adjusted so 
that the expected battery lifetime is close to the battery shelf 
life. Otherwise, lower discharging current does not bring any 
benefits because the battery lifetime does not improve further 
beyond its shelf life. The expected shelf life is generally 10 
years for both LA and LFP batteries [3]. For a 100-500Ah 
battery, the discharging current should be at rate C/10-C/20 to 
obtain the maximum benefits from a battery deployment. If 
the power demand of the house increases, the battery capacity 
should be increased instead of increasing the discharging 
current. In this case, the additional demand justifies the extra 
capacity and the battery lifetime can still be maximized with 
lower discharging current.   

Depth-of-discharge Analysis: The optimal depth-of-
discharge limit depends highly on the battery type. For this 
analysis we use the data from Figure 2 for LA and LFP 
batteries along with our battery model shown above. The most 
beneficial DoD limit for LFP and LA batteries are 50% and 
20-30% respectively.   
In summary, we can conclude from our analysis of the savings 
function in equation 11 that: 



 The battery capacity should be adjusted to meet the energy 
demand of the given house during the high pricing intervals. 

 The selected discharging current should be as low as 
possible, so that the expected battery lifetime is close to the 
battery shelf-life.  

 The optimal DoD level depends on the battery type. For 
LFP it is around 50% and for LA it is around 20-30%.  

IV. RESULTS 

In this section, we leverage our model to analyze three 
different houses from the MIT REDD database [9]. The power 
profiles of these houses are shown in Figure 3. Although all 
three houses show diurnal patterns, their power profiles have 
great diversity. House 1 has the largest demand and exhibits 
duty cycling of some appliances such as HVAC. The demands 
of House 2 and 3 are lower than House 1. The former has less 
frequent and smaller demand whereas the latter may require 
frequent and higher instantaneous power compared to House 2.  

We assume that these residences have two-level time-of-
use (ToU) electricity prices, representing off-peak and peak 
electricity prices. Figure 4 shows how the market electricity 
prices fluctuate in California as provided by the California ISO 
database [10]. Since we model two-level ToU pricing, we take 
the minimum and maximum limits of the price during the day 
to represent off-peak and peak electricity pricing. We apply 
peak pricing between 7am and 11 pm and off-peak pricing 
during the rest of the day [15]. Table I shows two different 
ToU pricing schemes that we use for comparison purposes.  

TABLE I.  TOU PRICES 

 Time Interval Pricing Case 1 Pricing Case 2 

Peak 7am – 11 pm 35 ȼ/kWh 45 ȼ/kWh 

Off-peak 11 pm – 7 am 10 ȼ/kWh 10 ȼ/kWh 

 

Fig. 3. Power demand profile of 3 houses from MIT REDD database [9] 

We simulate the power profile of a house for a single 
representative day, corresponding to average, with different 
battery configurations, i.e. battery type, capacity, DoD limit 
and discharging current rate. We refer to this process as load 
simulation. We use the results of load simulation as 
representative of the usage pattern of the battery going forward.   
We then perform battery analysis to estimate the lifetime of the 
battery and calculate the amortized battery cost. Table II shows 
the battery related parameters we use in our battery analysis.  
Battery lifetime analysis uses the data from Figure 2 to get a 
relationship between the number of charge/discharge cycles 
and various DoD levels. 

 

Fig. 4. Market electricity pricing from California ISO [10] 

TABLE II.  BATTERY PARAMETERS 

Input  LA Value  LFP value 

Battery unit price -rated with 20h 2 $/Ah [16] 5 $/Ah [17] 

Peukert’s exponent 1.15 [12] 1.05 [12] 

Battery shelf life 10 years [3] 10 years [3] 

Battery efficiency 80%  [4] 92% [4] 

Battery nominal voltage 12V [18], [19] 

Case 1: First, we study the pricing case where the off-peak and 
peak electricity prices are 10 and 35 ȼ/kWh, respectively.  This 
pricing corresponds to CAISO pricing data we have [10]. 
Before carrying our simulation study and battery lifetime 
analysis, we first put the battery related parameters in equation 
15 and observe that the inequality is: 

 Satisfied for LFP when DoD level is between 50-70% 

 Not satisfied for LA at any DoD level 
Therefore, we expect savings for only LFP battery and for 

only a narrow range of DoD values. We run simulations both 
to validate the feasibility conclusions of our framework and to 
find the best configurations. When we run our simulations, we 
find the optimal battery capacity for the case 1 pricing. Table 
III shows the results. LA battery does not result in any savings 
as we expected from our initial analysis. In contrast, LFP 
battery brings profits for all three houses. The optimal capacity 
changes depending on the power profile of the house. Since 
House 1 is the one with the highest demand, it can benefit more 
from larger capacity batteries. House 2 leads to the smallest 
battery as its power demand is low compared to the others.  

TABLE III.  OPTIMAL BATTERY CAPACITY FOR CASE 1 PRICING 

 
LA LFP 

Capacity (Ah) Savings ($) Capacity (Ah) Savings ($) 

House 1 

N/A 

359 298 

House 2 138 89 

House 3 324 233 

We present the detailed analysis of the optimal battery 
configuration in Figure 5. The graph in Figure 5 stands for 
House 1 when the battery capacity is optimized, i.e. a 359 Ah 
LFP battery. The graphs show the savings in y-axis in terms of 
dollars with changing DoD values in x-axis. Individual lines 
represent different discharge current rates. For this study, we 
have 4 different discharging current rates, i.e. 20h, 10h, 4h, 2h 
rates, corresponding to C/20, C/10, C/4 and C/2 respectively. 
The total savings for each battery configuration are presented 
over the respective battery lifetime value. 

The simulation results verify the outcomes of the 
theoretical approach. The results show that the LFP battery 
brings profit only for DoD values between 50-70%. We can 
also observe that other than C/20 discharging current rate, we 
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do not get any savings. When the discharging current rate is 
increased, both battery lifetimes and the effective battery 
capacity decrease, preventing us from taking full advantage of 
the price differences and do not get any cost savings. Although 
we present results of only House 1 in Figure 5, the other two 
houses have similar results. Thus, we conclude that for the case 
1 pricing the optimal battery configuration is achieved with 
LFP batteries, 60% DoD limit, C/20 discharging current and 
the capacity matching the house demand. With this 
configuration the LFP battery lifetime is around 8 years. 

 

Fig. 5. Savings vs. DoD for House 1 with optimal capacity 

Case 2: In this case, we increase the gap between off-peak and 
peak electricity prices and evaluate both the accuracy of our 
framework and the profitability of different battery 
configurations. When we use equation 15, we see that the 
inequality is satisfied for: 

 LFP when DoD level is between 30% - 80% 

 LA when DoD level is between 10% - 70% 
Here we have a larger set of profitable battery 

configurations due to the larger price difference. Table IV 
shows the optimal battery capacity values and the 
corresponding cost savings when using case 2 pricing. 
Compared to case 1, the optimal LFP capacities slightly 
increase because the price difference helps justify the 
additional battery capacity. LA batteries become a feasible 
option. The optimal LA capacities are larger than LFP because 
of their highly nonlinear behavior, lower efficiency and 
cheaper unit cost. We again observe that the power profile of 
the house affects the optimal capacity.   

TABLE IV.  OPTIMAL BATTERY CAPACITY FOR CASE 2 PRICING 

 
LA LFP 

Capacity (Ah) Savings ($) Capacity (Ah) Savings ($) 

House 1 624 481 359 1145 

House 2 255 166 138 413 

House 3 497 352 325 1006 

Table V summarizes the optimal battery configurations for 
three houses using case 2 pricing. We present the configuration 
for each house (including capacity, DoD limit and discharging 
current rate) resulting in the best savings shown in Table IV. 
The optimal DoD levels for LA and LFP batteries are 20% and 
60% respectively. LA battery limits DoD level more strictly 
because its performance degrades significantly when it is 
discharged deeper. Consequently, LFP battery requires less 
capacity because it is allowed to discharge deeper. In contrast, 
the discharging current should be scaled as low as possible to 
maximize the battery lifetime in order to increase savings. 
Decreasing the battery capacity with higher discharging current 

is another solution to decrease the total cost of batteries. 
However, reduced battery lifetime leads to frequent battery 
replacements, and thus we get lower profits. Therefore, we can 
conclude from our analysis that the battery capacity should be 
increased instead of increasing the discharging current.  

TABLE V.  OPTIMAL BATTERY CONFIGURATION FOR CASE 2 PRICING 

 

LA LFP 

Capacity DoD 
Dis. Cur. 

Rate 
Capacity DoD 

Dis. Cur. 

Rate 

House1 624 20% C/20 359 60% C/20 

House2 255 20% C/20 138 60% C/20 

House3 497 20% C/20 325 60% C/20 

The maximum savings of LFP batteries is $1145, $413 and 
$1006 for House 1, 2 and 3 respectively. The savings are $481, 
$166 and $352 for LA batteries. These savings are observed 
over the expected lifetime of the batteries. The expected battery 
lifetime values for LFP and LA for the best battery 
configuration are 8 and 4 years respectively. When we 
compare these different technologies over the same time 
interval, we see that LFP battery still brings 19%, 24% and 
43% more savings for House 1, 2 and 3 respectively. For case 
2 pricing, we can say that LFP batteries are 29% more 
profitable than LA batteries on average.  

 In both pricing cases, LFP batteries are more profitable 
compared to LA batteries even though they are more 
expensive. The former are more feasible because of its more 
linear battery behavior and longer cycle life. In contrast, the 
latter may have significant performance degradation due to its 
nonlinear battery behavior as well as larger energy losses. As a 
result, LA batteries require the difference between off-peak and 
peak electricity pricing to be larger. In the next part, we further 
analyze different pricing options and show how the optimum 
configuration and the savings change with these options. 

Pricing Analysis: In this part, we analyze the price differences 
in more detail. We study both a fixed price difference with 
varying low energy price and a varying price difference with 
fixed low energy price. Figure 6.a shows the results of fixed 
price difference whereas Figure 6.b outlines the outcomes of 
varying price difference using the power profile of House 1. 
We select House 1 because its demand is higher, and 
consequently, the effects of price changes are more visible than 
the other two houses. Both graphs have two y-axes, where the 
primary one stands for the savings obtained through the 
lifetime of the battery (8 years for LFP and 4 years for LA) in 
terms of dollars and the other one represents the best capacity 
value in Ah. The x-axis shows the varying low energy price in 
Figure 6.a and the price difference in Figure 6.b. We set the 
price difference to 35ȼ/kWh in Figure 6.a because it is the 
lowest that we observe savings for the LA battery. We also set 
the low energy price in Figure 6.b to 10ȼ/kWh to be 
compatible with Figure 4.  

Figure 6 shows that the optimum battery capacity is almost 
fixed, even though the pricing policy changes. Thus, we can 
say that the best capacity depends highly on the power demand 
of the house. In Figure 6.a, the LA battery performs better as 
the low energy price gets higher. However, for realistic (lower 
off-peak prices) cases, the LFP battery is more profitable. It 
compensates for its higher unit cost with long battery lifetime 
and higher efficiency. The advantages of these properties of 
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LFP battery are more visible in Figure 6.b. We see that the LA 
battery requires the price difference to be larger to obtain 
savings, but even if the price difference gets larger, the LFP is 
up to 3x more profitable than the LA battery. We do not show 
the DoD level and discharging rate results in Figure 6 for 
clarity. However, for both graphs in Figure 6, we observe that 
the best DoD values are 20% and 60% for LA and LFP 
batteries respectively. Also, the optimal discharging rate for all 
the cases is C/20. Once more, our framework shows the 
importance of choosing not only the optimal capacity but also 
the optimal battery type, discharging current rate and DoD 
level because we may not obtain the full benefits of the best 
battery capacity with a wrong battery configuration (see Figure 
5). Our framework also provides tight bounds for the 
profitability of a battery configuration and our simulation 
results validate the accuracy of these bounds. 

V. CONCLUSION 

Residential homes can benefit from using batteries to 
exploit electricity price differences applied by utilities. 
Previous work mainly focused on optimizing the capacity of 
the battery when deployed in a home, but largely neglected 
how the nonlinear properties of the batteries can affect the 
savings. In this paper, we develop a framework that models the 
nonlinear behavior of the batteries and tests the feasibility of a 
battery deployment and helps to find the best configuration. 
We also show that if the battery usage is not configured 
properly, even the optimal battery capacity may not result in 
savings. We validate the accuracy of our battery model against 
battery measurements and the results of our framework with 
real house data from the MIT REDD database. We compare 
LA and LFP batteries with two different ToU pricing cases 
with our framework and demonstrate that both batteries need to 
be specifically tuned to obtain savings, which is missed by 
previous work. We also show that LFP batteries are up to 43% 
more profitable even though they are more expensive.  
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Fig. 6. Savings&capacity vs. price differences using House 1 power profile. a) Fixed 35 ȼ/kWh price difference with changing low energy price, b) Increasing price 

difference with fixed 10 ȼ/kWh low energy price 
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