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Abstract—The increasingly pervasive deployment of 

networked sensors in the Smart Grid for monitoring energy 

consumption has resulted in an unprecedentedly large amount of 

data generation. Efficient methods are required to understand 

this high volume and high dimensional data on an embedded 

platform, which has many challenges due to memory, processing 

and power constraints. One of the popular methods to analyze 

time-series data is clustering. In this paper, we discuss D-Stream 

II, a common time-series clustering algorithm, and demonstrate 

that it fails to obtain clusters in sample Smart Grid applications. 

Then, we propose an enhanced version of this algorithm, which 

handles the scenarios where the original algorithm fails. We show 

the effectiveness of our algorithm using real residential power 

consumption data from Pecan Street database. Our enhanced 

algorithm efficiently handles the high volume energy 

consumption data and captures the everyday energy 

consumption patterns of each residential home, which allow the 

consumer to compare energy consumption with their neighbors 

or detect any abnormality such as a defective appliance. The 

consumers can also be clustered into different groups, which can 

be effectively used to enhance the demand response policies.  Our 

algorithm can perform clustering on approximately half a million 

energy consumption data points using only 5KB max memory, 

360J max overhead in energy consumption and can complete in 8 

mins on a resource limited embedded platform (Raspberry Pi 2). 

Keywords— time-series, clustering, smart grids, density-based 

clustering, embedded platform 

I.  INTRODUCTION AND RELATED WORK 

Smart Grid leverages a large number of sensors to collect 

information about the surroundings, e.g. energy, voltage, 

current of each appliance, temperature data, etc. This generates 

a huge volume of data and the need for faster processing [1]. 

Such continuously increasing data provide tremendous 

opportunities in understanding the dynamics of the consumer 

as well as the utility to optimize the Smart Grid. Data can be 

generated at a high temporal resolution (e.g. every second), but 

frequently, relatively low-resolution data (e.g., every 15 mins) 

is transmitted and used, as the amount of storage space required 

for high-resolution data is prohibitively large. For utility 

companies serving millions of customers, storing this high-

resolution data can sum up to petabytes [12]. Similarly, 

transmission of such high-resolution data can cause serious 

congestion issues in the transmission network. However, high-

resolution data is extremely beneficial for many analytical 

applications such as detailed visualization [13], energy 

disaggregation [14], monitoring of residential power quality 

[15], and short-term forecasts of energy generation/load [16, 

17] or energy prices [18]. Effective techniques are required for 

analyzing this data closer to the source (e.g., a smart meter) so 

that relatively low volume of data is stored and transmitted. In 

the Smart Grid the lower-end devices closer to where data is 

generated are typically embedded devices, which has 

constraints in memory, processing speed and power. 

Time-series clustering on sensor data can be highly 

beneficial for Smart Grid applications, such as analyzing 

everyday energy demand patterns. Both users and utilities can 

take advantage of the results of such analysis. The former 

group can optimize their energy consumption by adjusting their 

demand based on electricity price and/or alternative energy 

resource availability. The latter can identify potential user 

groups by clustering, which can be effectively used to enhance 

the Demand Response policies [3] for a real-time automatic 

control in the Smart Grid.  

Time-series clustering methods are classified into five 

categories [4]: Partitioning Clustering, Hierarchical Clustering, 

Density-based Clustering, Grid-based Clustering, and Model-

based Clustering. An effective clustering algorithm for an 

embedded platform is one which performs clustering 

accurately, using limited input from the user with the memory, 

processing and power constraints of the embedded system. 

CluStream [5] is a partitioning based clustering algorithm for 

time-series data. It uses k-means as the base method and forms 

spherical shaped clusters. This algorithm fails to form clusters 

of arbitrary shape and also requires the user to pre-set the 

number of clusters. Thus, it is not appropriate for our 

application. CluTree [6] is a hierarchical clustering based 

algorithm for time-series data. This algorithm has no 

backtracking capability, i.e. once a cluster is merged or split, it 

cannot be undone. Similar to the previous one, it has very 

limited adaptability. In hierarchical clustering, cluster 

information is stored for every hierarchy level, which makes 

CluTree very expensive in terms of memory utilization. 

SWEM [7] is a model-based clustering algorithm that clusters 

data in a time-based sliding window with expectation 

maximization technique. This algorithm optimizes the fit 

between the data and a mathematical model. The accuracy of 

the algorithm depends heavily on the accuracy of the pre-

selected mathematical model. The algorithms that are based on 

partitioning, hierarchical clustering and model-based clustering 

are not appropriate for embedded platforms due to their non-

adaptive behavior [4].  

DenStream [8] is a density-based clustering algorithm. It 

has the ability to form arbitrary shape clusters, detect outliers 

and automatically determine the number of clusters. Often 
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density-based clustering is combined with grid-based 

clustering, which is known as density-grid-based clustering [4]. 

D-Stream [9] is a density-grid-based time-series clustering 

algorithm. This algorithm has fast processing time and 

bounded memory utilization since it depends on the number of 

grids, which is fixed, instead of the number of data points. D-

Stream II [10] is an extension of the original D-Stream 

algorithm. It improves the clustering accuracy by considering 

the attraction of grids, which characterizes the spatial 

information of the data in each grid. Due to low memory 

utilization, fast processing time and clustering accuracy [4][10] 

as compared to other algorithms, D-Stream II is an appropriate 

fit for clustering time-series data on an embedded platform 

such as Raspberry Pi 2 (RPi2) in a Smart Grid. RPi2 provides a 

low-cost platform which interconnects and controls various 

devices/sensors and presents a computing environment that 

suits well for embedded Smart Grid applications. 

Despite its advantages, there are three scenarios which 

occur frequently in real time series, where the D-Stream II 

algorithm fails or is inaccurate. For example, D-Stream II 

algorithm fails to generate any clusters for 135 real time-series 

datasets of one-year energy consumption of 15 residential 

house from Pecan Street, which results in significant 

information loss and leads to an incorrect interpretation of 

energy consumption data. In this paper, we propose a modified 

D-Stream II algorithm, which performs clustering in scenarios 

where the original algorithm fails while maintaining the 

performance in other scenarios. Our algorithm performs 

clustering on approximately half a million energy consumption 

data points using only 5KB max memory, 360J max energy 

consumption overhead and can complete in 8 minutes on RPi2 

which is within the memory, processing and power constraints 

of RPi2. 

 The remainder of this paper is organized as follows: in the 

next section, we introduce the original D-Stream II algorithm 

and its issues. In section III, we introduce our clustering 

algorithm. In section IV, we analyze one-year energy 

consumption data of 15 residential houses from Pecan Street 

with our algorithm. Finally, in section V, we conclude the 

time-series clustering for analysis in Smart Grid. 

II. D-STREAM II ALGORITHM 

The D-Stream II algorithm has online and offline phases. In 

the online phase as shown in Algorithm 1, lines 5-7, each 

multi-dimensional input data is mapped to a corresponding 

discretized grid and the characteristic vector of the grid is 

updated. In the offline phase, which is performed after every 

time interval gap as shown in Algorithm 1, lines 8-14, the 

clusters are adjusted dynamically i.e. new clusters are created 

and existing clusters are disintegrated. The D-Stream II 

algorithm adopts a density decaying technique to capture the 

dynamic changes of a data stream and an attraction-based 

mechanism to accurately generate cluster boundaries. It 

clusters two neighboring grids only if they are strongly 

correlated. Two grids are considered as strongly correlated if 

their attractions in both directions are higher than a threshold 

value. During the offline phase, it only adjusts grids whose 

density attributes changed since the last time the grids were 

adjusted. 

Each grid stores a characteristic vector which captures the 

evolving nature of the data stream. The characteristic vector of 

a grid g is a tuple (tg, tm, C, D, label) [17], where tg is the last 

time when g is updated, tm is the last time when g is removed 

from grid list as a sporadic grid, C is a 2D-vector denoting the 

attraction from g to its neighbors, D is the grid density at the 

last update, and label is the class label of the grid. Whenever a 

data point is mapped to the grid its characteristic vector is 

updated.  

Algorithm 1: Main Procedure of D-Stream II 

1.    tc = 0; 

2.    initialize an empty red-black tree for grid list; 

3.    while data stream is active do 

4.          read record x = (x1, x2, . . . , xd); 

5.          determine the density grid g that contains x; 

6.          if (g not in grid list) insert g to grid list; 

7.          update the characteristic vector of g; 

8.          if tc == gap then 

9.              call initial clustering(grid list); 

10.        end if 

11.        if tc mod gap == 0 then 

12.             detect and remove sporadic grids from grid list; 

13.             call adjust clustering(grid list); 

14.         end if 

15.         tc = tc + 1; 

16.   end while 

The algorithm takes into consideration the attraction of two 

grids while merging the grids into a cluster. As shown in Fig 1, 

the data in grid 1 is located at the upper left corner and the data 

in grid 5 is located at the lower half of the grid and both the 

grids have density above the threshold value, while the density 

of grids 2, 3, 4 and 6 is less than dense threshold. The other 

algorithm will cluster grid 1 and grid 5 and consider other grids 

as transitional or sparse. The D-Stream II algorithm will cluster 

grid 1 with grid 2, 3, 4 and grid 5 with grid 6 based on the 

attraction of the neighboring grids which based on the spatial 

locality of the data looks more accurate.  

 

Fig 1 Attraction between different grids[17] 

Algorithm 2 : Procedure for initial clustering in D-Stream II 
(grid list) 

1.   update the density of all grids in grid list; 

2.   assign each dense grid to a distinct cluster; 

3.   label all other grids as NO CLASS; 

4.   repeat 

5.       foreach cluster c 

6.           foreach outside grid g of c 

7.               foreach neighboring grid h of g 

8.                   if (g and h are strongly correlated) and (h   

                          belongs to cluster c’) 

9.                       if (|c| > |c’|) label all grids in c’ as in c; 

10.                       else label all grids in c as in c’; 

11.                  else if (g and h are strongly correlated) and  

                                  (h is transitional) label h as in c; 

12.   until no change in the cluster labels can be made 
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Algorithm 2 shows the first component of offline phase i.e. 

initial clustering which is called when the time interval is equal 

to the gap time. The initial clustering procedure marks all the 

dense grids as separate clusters and for each cluster checks if a 

strongly correlated neighbor grid exists or not. If a strongly 

correlated neighbor is found then the neighboring grid is 

merged with the cluster.  

Algorithm 3: Procedure for adjust clustering in D-Stream II 
(grid list) 

1.  update the density of all grids in grid list; 

2.  foreach grid g whose attribute  

                  (dense/sparse/transitional) is changed since last  

                   call to adjust clustering() 

3.     if (g is a sparse grid) 

4.         delete g from its cluster c, label g as NO CLASS; 

5.         if (c becomes unconnected) split c into two clusters; 

6.     else if (g is a dense grid) 

7.           among all neighboring grids of g that are strongly  

              correlated to g, find out the grid h whose cluster 

              ch has the largest size; 

8.           if (h is a dense grid) 

9.               if (g is labeled as NO CLASS) label g as in ch; 

10.             else if (g is in cluster c and |c| > |ch|) 

11.                      label all grids in ch as in c; 

12.             else if (g is in cluster c and |c| ≤ |ch|) 

13.                       label all grids in c as in ch; 

14.         else if (h is a transitional grid) 

15.              if ((g is NO CLASS) and (h is an outside grid  

                           if g is added to ch)) label g as in ch; 

16.              else if (g is in cluster c and |c| ≥ |ch|) 

17.                       move h from cluster ch to c; 

18.   else if (g is a transitional grid) 

19.         among neighboring grids of g that are dense and  

              strongly correlated to g, find the grid whose  

              cluster c’ has the largest size; 

20.         label g as in c’; 

21. end for 

The second component of offline phase i.e. adjusts 

clustering procedure is shown in Algorithm 3.  Adjust 

clustering procedure is called whenever the time interval is a 

multiple of the gap time. The algorithm clusters two 

neighboring grids only if they are strongly correlated where 

two grids are considered as strongly correlated if their 

attractions in both directions are higher than a threshold value. 

The threshold value is calculated by averaging the total sum of 

attraction between each pair of grids which is 
1

|𝑃|(1−𝜆)
 , where P 

is the total number of grid pairs and λ is decaying factor. 

During the offline phase, the algorithm only adjusts grids 

whose density attributes changed since the last time the grids 

were adjusted. For example, at time t1 grid g is transitional and 

after tgap time, the grid becomes dense then the algorithm 

adjust the grids and clusters the grid g with its strongly 

correlated neighbor. But, if even after tgap time the grid g is 

still transitional, the algorithm does not adjust the grids.  

The D-Stream II algorithm determines, this time, interval 

gap so that the dynamic nature of the data is captured and the 

time interval is not too small or large. The D-Stream II 

algorithm handles outliers by detecting the sporadic grids from 

the sparse grid and removing the grid from the grid list. The 

sparse grid is considered as sporadic grid if the density of the 

grid is less than the density threshold function which is 

determined such that a transitional or dense grid will never be 

falsely deleted due to the removal of the sporadic grid. This 

approach improves the time complexity of the algorithm since 

all grids are not adjusted every time gap interval. 

Although the original D-Stream II algorithm performs 

accurate and efficient time-series data clustering in most 

scenarios, it fails or is inaccurate in three scenarios: 1) no 

isolated dense clusters are formed after initial clustering as the 

original D-Stream II algorithm generates a newly isolated 

clusters only once in offline phase i.e. only in the initial 

clustering procedure, 2) dense grids are never merged if 

initially they are not correlated as the original D-Stream II 

algorithm does not consider correlation as an attribute and 3) 

the original D-Stream II algorithm also considers the diagonal 

grids along with the neighboring grids for calculation attraction 

with neighboring grids. 

III. MODIFIED D-STREAM ALGORITHM 

Our modification of D-Stream II clustering algorithm 

handles all three scenarios mentioned above while maintaining 

the performance in other scenarios and performs effective and 

accurate clustering as compared to the original D-Stream II 

algorithm. It generates a new isolated dense grid in every 

offline phase call, it also considers the correlation between the 

two grids as clustering criteria and only considers the 

neighboring grids for attraction calculation. The algorithm is 

also capable of detecting and removing sporadic grids mapped 

by outliers in order to dramatically improve the space and time 

efficiency of the system. 

Algorithm 4 : Main procedure for our modified  algorithm 

1.   tc = 0; 

2.   initialize an empty red-black tree for grid list; 

3.   while data stream is active do 

4.         read record x = (x1, x2, . . . , xd); 

5.         determine the density grid g that contains x; 

6.         if (g not in grid list) insert g to grid list; 

7.         update the characteristic vector of g; 

8.         if (tc mod gap == 0) or (tc == gap )then 

9.             detect and remove sporadic grids from grid list; 

10.            call adjust clustering(grid list); 

11.       end if 

12.       tc = tc + 1; 

13.  end while 

A. Isolated dense grids:  

The original D-Stream II algorithm considers an isolated 

dense grid as a newly generated cluster only in the initial 

clustering procedure. During the subsequent call of offline 

phase, D-Stream II algorithm checks if a dense grid has any 

strongly correlated neighboring grids which belong to an 

already generated cluster or not. If such a strongly correlated 

neighbor is found then the grid is added to the neighboring 

cluster. If no such neighboring grid is found, then the D-Stream 

II algorithm does not categorize the dense grid into a newly 

generated cluster which over the time can grow into a larger 

cluster. Since D-Stream II algorithm does not consider such 

isolated dense grids the clustering result are not very accurate.  

In our modified D-Stream II algorithm, we consider an isolated 

dense grid as a newly generated cluster if no strongly 

correlated neighbors are found.  Algorithms 4 and 5 show the 
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main and adjust clustering procedures of the modified D-

Stream II algorithm. In the modified D-Stream II algorithm, 

adjust clustering procedure for every time interval gap, if for a 

dense grid g a strongly correlated neighbor does not exist and 

the grid does not already belong to any cluster then a newly 

isolated cluster is formed as shown in Algorithm 5 in line 9 and 

10. Since in the modified algorithm we always generate an 

isolated cluster for a dense grid in adjust clustering procedure, 

we do not have to explicitly call the initial clustering 

procedure. Therefore, in our modified D-Stream II clustering 

algorithm the call for the initial clustering procedure is 

removed from the main procedure as shown in Algorithm 4 on 

line 8-10. 

Algorithm 5:  Adjust clustering procedure in our algorithm 
(grid list) 

1.  update the density of all grids in grid list; 

2.  foreach grid g whose attribute  

                   (dense/sparse/transitional) is changed since last  

                   call to adjust clustering() or the grid becomes  

                   strongly correlated to at least one neighbor 

3.     if (g is a sparse grid) 

4.         delete g from its cluster c, label g as NO CLASS; 

5.         if (c becomes unconnected) split c into two clusters; 

6.     else if (g is a dense grid) 

7.           among all neighboring grids of g that are strongly  

              correlated to g, find out the grid h whose cluster 

              ch has the largest size; 

8.           if (h is not found) and (g does not belong to any  

                   cluster) 

9.              assign grid g to a distinct cluster;   

10.          else if (h is a dense grid) 

11.             if (g is labeled as NO CLASS) label g as in ch; 

12.             else if (g is in cluster c and |c| > |ch|) 

13.                       label all grids in ch as in c; 

14.             else if (g is in cluster c and |c| ≤ |ch|) 

15.                       label all grids in c as in ch; 

16.         else if (h is a transitional grid) 

17.            if ((g is NO CLASS) and (h is an outside grid  

                          if g is added to ch)) label g as in ch; 

18.            else if (g is in cluster c and |c| ≥ |ch|) 

19.                       move h from cluster ch to c; 

20.   else if (g is a transitional grid) 

21.         among neighboring grids of g that are dense and  

              strongly correlated to g, find the grid whose  

              cluster c’ has the largest size; 

22.         label g as in c’; 

23. end for 

B. Dense grid merging attributes:  

 D-Stream II algorithm adjusts the grid list only when the 

grid attributes change since the last time the grid was adjusted. 

The algorithm only considers the whether a grid is dense, 

transitional or sparse as an attribute. It does not take into 

consideration the evolving attraction of the two grids. It is 

possible that at time t two grids are dense but are not strongly 

correlated as shown in Fig 2(a). However, over time, the two 

grids become strongly correlated. The D-Stream II algorithm 

only adjusts cluster when an attribute changes, it does not 

merge the two dense grids as the attribute of both the grids has 

not changed as shown in Fig 2(b). Thus, in our modified D-

Stream II algorithm, we also consider the correlation between 

the grids as an attribute as shown in line 2 of algorithm 5 to 

improve the clustering accuracy as shown in Fig 2(c). 

           

(a)Non-correlated grids          (b) D-Stream II           (c) Our algorithm 

Fig 2 Correlation between two grids 

C. Attraction Calculation:  

 In D-Stream II algorithm the attraction of a grid with its 

neighboring grids is calculated as shown in Fig 3(a) where the 

attraction of grid g with grid f is defined as the ratio of the 

volume of intersection of the hypercube (ACEG) yellow region 

and grid f i.e FG*GH to the volume of the hypercube. 

However, the D-Stream II algorithm defines the neighboring 

grids of grid g as a set of grids whose center differ from g in at 

most one direction. Therefore, a grid g will have 2 neighbors in 

ith dimension, one whose center in ith dimension is greater than 

the center of grid g in ith dimension and other with center in ith 

dimension less than the center of grid g in ith dimension and the 

center of grid g and its neighbor is equal in all another 

dimension except ith dimension. In our modified D-Stream II 

algorithm, while calculating the attraction of grid g to its 

neighboring grids, we do not consider the attraction of grid g 

with grid k as only grid f and grid h are neighbors of grid g as 

shown in Fig 3(b) which improves the clustering accuracy. 

                           

(a)                                                   (b)  

Fig 3 Grid attraction calculation 

IV. RESULTS 

We use our modified D-Stream II time-series clustering to 

analyze everyday energy demand patterns. We analyze the real 

time-series energy consumption data of 15 different residential 

houses from Pecan Street which represent various people, 

demographics, and energy consumption patterns. We used 

three different time resolutions: 1 hour, 15 minutes and 1 

minute and three different energy consumption resolutions: 

0.125kWh, 0.25kWh, and 0.5kWh, where energy resolution is 

equal to the width of each grid. Higher time and energy 

resolution give more granular information about the energy 

consumption pattern but utilize more memory. Lower time and 

energy resolution give coarse information about the energy 

consumption patterns but utilize less memory. We use different 

time and energy resolution to analyze the trend between 

granularity and memory utilization and observed that our D-

Stream II algorithm perform clustering within the memory 

constraints of time and energy resolution as 1min and 

0.125kWh respectively.  

We implemented the modified D-Stream II clustering 

algorithm on RPi2 which is a low processing embedded 

platform and is very frequently used for home automation in a 

Smart Grid environment. We analyzed a total of 135 different 
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data sets of real energy consumption 9 datasets per house for 

different time and energy resolutions. The original D-Stream II 

algorithm was not able to converge and provide clusters on any 

of 135 data sets. However, our modified D-Stream II algorithm 

obtained clusters for all 135 data sets of 15 different residential 

house.  

A. Comparison with original D-Stream II: 

Fig 4 shows the number of grids used and the number of 

clusters formed over time for clustering one-year energy 

consumption data of house number 1 using original D-Stream 

II and modified D-Stream II clustering algorithm for 1-hour 

time resolution and 0.25kWh energy resolution. The number of 

grids populated is the same for both the algorithm as it 

represents the mapping of data which is same for both 

algorithms. Fig 4 shows that the number of the clusters formed 

is always zero for original D-Stream II but the modified D-

Stream II algorithm generates dynamic clusters over time 

where the number of clusters first increases as the grid is being 

populated for the first time and then decreases as correlated 

clusters are merged and less frequently used ones are deleted. 

 

Fig 4 Number of grids used and clusters formed over time  

B. Applications: 

The dynamic clustering can be used for context analysis in 

many ways. One way is to analysis the frequency of different 

energy consumption values over time. Fig 5 shows the number 

of times a grid with particular energy consumption value is 

updated over a time period of one-year for five representative 

houses for the time resolution of 15 minutes and energy 

resolution of 0.125kWh. Most frequent energy consumption for 

house no 1, 2, 3, 4 and 5 is around 0.625kWh, 0.375kWh, 

0.375kWh, 0.5kWh, and 0.25kWh respectively. The range of 

most frequent energy consumption for house no 59, 68, 86, 93 

and 94 is around 0.375-2.25 kWh, 0.25-1 kWh, 0.25-1.75 kWh, 

0.25-1.5 kWh and 0.125-0.75 kWh respectively. 

 

Fig 5 Frequency of energy consumption 

Consumers can detect defective appliances by using 

dynamic clustering. If different clusters with higher energy 

values are formed for similar energy consumption pattern 

which this means an appliance is consuming more energy 

because the appliance is defective. They can also compare their 

energy consumption pattern with their neighbor by comparing 

the clusters formed by different houses. When customers 

received information on the energy consumption of their 

neighbors, average energy use declined [19]. 

C. Memory utilization on RPi2: 

 

Fig 6 Max memory in bytes for different time resolutions 

In Fig 6, we show the maximum memory usage in bytes 

while clustering energy consumption data of each house for 

different time and energy resolution. We can see that the 

maximum memory utilization among all the houses is 4196 

bytes (< 5KB) which occur for house no. 6 for energy 

resolution of 0.125kWh and time resolution of 15 mins. Also, 

we can see that the memory utilization increases with increase 

in the time resolution as we will have more data points since 

the sampling rate is increased and decreases with a decrease in 

energy resolution as we will have less number of grids.  

D. Power/Energy Consumption on RPi2: 

 

a) Time resolution of 1 min 

 

b) Time resolution of 15 mins 

 

c) Time resolution of 1 hour 

Fig 7. Power consumption on Raspberry Pi 2 
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Fig 7 shows the power consumption for different time 

resolution while performing clustering using our algorithm for 

house no 7 which has the maximum memory utilization among 

15 houses. The power consumption when RPi2 is idle is 

800mW and it increases to 1500mW when our clustering 

algorithm is performed. Therefore, the energy consumption 

overhead increase (shown as the shaded area in Fig 7) on RPi2 

for clustering using our algorithm for house no 6 is 360J, 20J, 

and 4J for time resolution 1min, 15mins and 1 hour 

respectively. Average energy consumption overhead increase 

on RPi2 for 15 houses is 291.6J, 16.84J and 3.78J for time 

resolution 1min, 15mins and 1 hour respectively. The energy 

consumption increases with increase in the granularity of time 

resolution as the clustering is performed on a larger set of data 

points and takes more execution time. The max energy 

consumption overhead increase (360J) in RPi 2 due to our 

algorithm is reasonably low for a real-time embedded 

application. 

E. Performance on RPi2: 

We also found that for the given one-year energy 

consumption of five different house the maximum number of 

grids used were 75 out of 200 and the maximum number of 

clusters formed were 26. Fig 8 shows the execution time in 

logarithmic scale for three different houses for different time 

resolutions. The total execution time for clustering one-year 

energy consumption data for house no 6 using our algorithm on 

RPi2 is 520sec, 25sec, and 5sec for the time resolution of 1 

min, 15 mins and 1 hour respectively. The average execution 

time on RPi2 for all 15 houses is 421sec, 21sec, and 4.5sec for 

the time resolution of 1 min, 15 mins and 1 hour. The 

execution time increased with increase in the granularity of 

time resolution as we had more data points as shown in Fig 8. 

Execution time for the time resolution of 1 min is more than 

execution time for the time resolution of 15 mins and 1 hour 

(60mins). The max execution time (520sec) on RPi2 for 

processing nearly half a million data points is within the 

processing constraint of a real-time embedded system. 

 

Fig 8 Execution time vs time resolution 

V. CONCLUSION 

In this paper, we proposed a modified D-Stream II density 

grid-based clustering algorithm for context analysis of time-

series data in Smart Grid. We show the D-Stream II fails to 

cluster in three different scenarios while our algorithm 

converges and perform clustering. Based on our analysis of 

energy consumption of 15 residential houses, we showed that 

modified D-Stream II clustering algorithm performs the 

clustering within memory and processing constraints of RPi2. 

The modified D-Stream II algorithm perform clustering on 

approximately half a million energy consumption data values 

within a memory utilization of 5KB and execution time of 

8min and energy consumption overhead of 360J.  
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