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Abstract. Residential energy constitutes a significant portion of the to-
tal US energy consumption. Several researchers proposed energy-aware
solutions for houses, promising significant energy and cost savings. How-
ever, it is important to evaluate the outcomes of these methods on larger
scale, with hundreds of houses. This paper presents a human-activity
based residential energy modeling framework, that can create power de-
mand profiles considering the characteristics of household members. It
constructs a mathematical model to show the detailed relationships be-
tween human activities and house power consumption. It can be used to
create various house profiles with different energy demand characteris-
tics in a reproducible manner. Comparison with real data shows that our
model captures the power demand differences between different family
types and accurately follows the trends seen in real data. We also show
a case study that evaluates voltage deviation in a neighborhood, which
requires accurate estimation of the trends in power consumption.
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1 Introduction

Residential energy accounts for 38% of the total energy consumption in the
US, with millions of individual consumers [10]. Although the other components,
such as commercial or industrial, are well-investigated, residential energy has not
been studied extensively until recently. Due to high potential of savings, many
researchers have started to focus on methods to minimize the residential en-
ergy consumption. These studies target heating, air conditioning and ventilation
(HVAC) units, appliances, and electric vehicles (EVs). The new technologies,
such as home automation kits, smart meters, controllable appliances, provide
constant monitoring and detailed energy usage breakdown in the houses, mak-
ing it easy to deploy energy-aware solutions. The studies show that it is possible
to obtain significant savings by cleverly adjusting the power demand, and these
savings can easily add up to correspond millions of dollars savings.

Despite the effectiveness of energy-aware residential solutions, it is not easy
to test them on a larger scale. Residential buildings have a dominant human
factor. Many of the energy-aware mechanisms are designed to perform uniformly
regardless of different compositions of families leading to variations in habits and
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energy usage. Thus, we cannot expect that the outcomes (e.g. savings) will be
the same for different households. It is also important to see the overall effect
of these mechanisms on the electrical grid, when several houses are applying
them simultaneously. This aspect is important for utilities, that want to predict
the energy demand ahead of time to match supply and demand. To reflect the
human element, the differences across the demand profiles of individual houses
should be considered. Previous studies use either real [3] or generated traces
[15] for this purpose. The former requires equipment installation across many
houses, which has high cost. It is not generalizable and the traces cannot be used
to create statistically correlated, new traces. The latter increases the scalability
of representing houses, but requires careful modeling for the human element.

This paper presents a user-behavior model to estimate the energy consump-
tion of a house. Our model is based on detailed activity sequences of household
members and the connections between these activities and appliances. We use
two publicly available data sets, American Time Use Survey (ATUS) and Res-
idential Energy Consumption Survey (RECS) to account for user activity and
appliance usage habits. ATUS contains detailed activity responds from more
than 10000 individuals over one year and RECS has statistics from more than
110 million households, both from entire US. Our model develops hierarchical
activity graphs for each individual and probabilistically determines the appli-
ance usage events. When creating power profiles for the houses, we consider the
characteristics of the inhabitants and show the relationships between these and
the house power demand. We compare our model against real house traces from
Pecan Street database [11]. The power profiles we generate follow the trends in
real traces, e.g. matching the peak demand times and frequencies. We show the
importance of this with a case study, where we evaluate voltage deviation in a
neighborhood. We use a grid simulator [2] to compute the deviation values and
show that our model captures the high deviation events with high accuracy.

2 Related Work

User behavior modeling studies estimate appliance and plug load energy con-
sumption in residential houses. Previous studies construct models based on his-
torical activities [15, 6, 12], using commonly available activity data sets such
as ATUS [17] data. They group the activities into meaningful clusters and cre-
ate user categories based on people’s age, gender, employment status, and the
number of other household members. Other studies use similar survey data from
France [4], UK [7] and Spain [14]. These studies also use machine learning meth-
ods such as Markov chains [12], neural networks, Bayesian networks, and decision
trees [4] to determine the activity chains, i.e. which activity is more likely to fol-
low another. These models rely only on activity data, thus cannot capture the
dynamic relationship between activity sequences and appliance usages.

Using these data sets, previous studies determine which activities are related
to appliances either manually [12] or by using another data set [15] (RECS [8]).
After this linking, they estimate the starting time of appliances (such as washer,
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dryer, dishwasher) and the operating conditions of bigger units (e.g. refrigerator,
HVAC, lighting, etc.). The house energy consumption is then simply aggregation
of all the individual appliances and plug load units. By disaggregating the to-
tal energy consumption, previous studies can apply different mechanisms (such
as appliance rescheduling, controlling HVAC and lighting parameters, etc.) to
participate in demand response programs ultimately to save energy [16] and
electricity cost [18]. There are also the widely-used residential energy databases,
REDD [13] and Smart* [3] that show the disaggregated energy consumption of
several houses over a couple of months. To get detailed user behavior models,
the researchers use the disaggregated appliance consumption to deduce the user
behavior or occupancy [5]. The main disadvantage of this approach is that there
is no real information in the data set on what the users were actually doing and
thus have to be mostly guessed. Different than previous studies, we use high
granularity user activity data to represent the relationship between users and
appliances. We create power profiles not just for individuals but also for families
and a neighborhood with several families. We verify our model using real data
from Pecan Street, and show that our traces are highly correlated with real data.

3 User Behavior Modeling with Activity Graphs

In this section, we first develop a graph-based model to represent the chain
of user activities. Our main goal is to probabilistically capture the time-series
nature of user behavior. These probabilities depend on several people-related and
non-people-related variables. The former include the number of other household
members, people’s gender, age, employment status, etc. whereas the latter have
time of day, day of week, etc. We use these variables to calculate the probability
of an event that would follow another event at a given time.

Fig. 1: Activity graph structure

User activities are the main events
in a house that trigger energy con-
sumption. We define user activity as
a set of actions associated with one
or multiple appliances over a time pe-
riod. For example, cooking is an activ-
ity that includes all actions between
getting into the kitchen and cleaning
the dishes. During this activity, the
user might use several appliances such
as refrigerator, oven, microwave, etc.
The exact set of appliances associated with an activity changes among different
activity instances. All activities have a duration associated with them. The day
of a person is divided into discrete activity blocks. The next step is determining
the chain of activities for a user. We model the next activity for a given one
probabilistically, which depends on a similar set of variables as described earlier.
Using this information, we build activity graphs, where the nodes are the activ-
ity blocks (with inner graphs as actions for a specific activity) and the edges are
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the activity transitions. The graph is designed to be cyclic with sleeping activity
as the reference node. The formal construction of the activity graph includes the
following steps (following Figure 1):
1. The activity graph is a directed graph and with activity blocks {Ai|1 ≤ i ≤
N}, where N is the number of activities, as the nodes and transitions between
the activities as edges. The activity blocks are shown by big rectangles and the
transitions are the directed edges between them in Figure 1.
2. Each activity, Ai, is followed by a set of activities {Aj |1 ≤ j ≤ Ni} where each

transition (Ai → Aj) has a probability, pij . Thus,
∑Ni

j=1 pij = 1. This makes sure
that the activity chain never ends.
3. Each activity, Ai, consists of a sub-graph, with nodes as the actions of that
activity, aik, and the edges are the transitions between the actions. The actions
are shown by the smaller rectangles in the activities and the transitions are the
directed edges between the smaller rectangles in Figure 1. The transitions can
result in another action but also the end of that activity. The probability of
transition from aj to ak in Ai is denoted by pijk. The probability of transition

from aj to the end of Ai is shown by pijt, where the sub-index t corresponds

to activity termination. Similar to 2,
∑Nj

k=1 p
i
jk = 1, where Nj is the number of

transitions that can follow aij in Ai.
4. For each activity Ai, there is an appliance set associated with it Api =
{Apij |1 ≤ j ≤ ni}, where ni is the number of appliances in set Api. This set
contains the individual appliances Apij , whose operation can be triggered by the
actions of Ai. We follow a probabilistic approach for the appliance triggering.
The probability of aij triggering appliance Apik is p(aij → Apik). These relations
are shown by dotted lines in Figure 1. For these probabilities, we do not require
any probability summation to be equal to 1 because an action (or a set of actions)
does not always trigger an appliance.
5. Our appliance definition suits most of the plug loads with ON/OFF states.
These are discrete appliances [18]. This might now work for some appliances
with continuous energy draws, e.g. refrigerator, HVAC, and lighting.
Refrigerator: The power consumption follows a duty cyclic behavior, except
when its door is opened. This is mostly observed during a cooking activity.
We model the refrigerator power consumption as a constant addition to the
aggregated house consumption, with higher value during cooking activities.
Lighting: We breakdown the lighting into individual rooms and associate them
with activities when performed in the relevant room. We also set time-of-day as
another constraint for room lights to be ON.
HVAC: The operation of HVAC is correlated with user preferences [18]. Since
its temperature settings affect its active power consumption, we cannot assume
an ON/OFF model. As developing a new HVAC manager is not in our paper’s
scope, we adopt the methodology in [18], which models the correlation with user
preferences for scheduling and temperature settings.
6. We model the activity graph as cyclic. We select one activity as the starting
activity of a day where at the end of the day, that activity is repeated. We choose
the sleeping activity for this purpose, but another repeating activity can be used.
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Table 1: List of activities, actions and associated appliances

Activities Actions Appliances

Sleeping N/A N/A

Personal grooming
Showering, bathing, brushing teeth,
hair drying, shaving

Electric razor, electric toothbrush,
hair dryer, bathroom lights

Cooking
Preparing food, eating, cleaning
kitchen, washing dishes

Microwave, stove, oven,
refrigerator, dishwasher,
water heater, kitchen lights

Cleaning
Laundry, interior cleaning,
exterior cleaning

Washer, dryer, vacuum cleaner,
room lights

Entertainment Watching TV, using computer
TV, computer, any other small
entertainment device, e.g. x-box,
playstation, etc., room lights

Working at home Using computer, reading, writing Computer, room lights

Going to work N/A N/A

4 Activity Graph Construction

This section shows how we calculate the activity graph parameters. There is a
separate graph for each individual, thus we estimate the parameters separately
for different classes of people. To meet our classification needs, we use ATUS
data [17]. It has more than 10000 participants from different parts of the society
and includes their detailed activity information, which corresponds to the ac-
tions/activities in our graphs. ATUS does not have any details about appliance
usages. We use another data set, RECS [8], which surveys more than 110 million
households and has statistics regarding the families, the types and numbers of
appliances used, and how frequently they use the appliances. We get the higher
level family and appliance statistics from RECS and connect them with the lower
level, individual activity data from ATUS.

Activity-related parameters These parameters correspond to the physical
characteristics of user actions and activities.
Set of activities: The ATUS data set does not make a distinction between
actions and activities. It provides the information of what a user does. It classi-
fies the activities hierarchically, which helps us determine the set of actions vs.
activities. The first column of Table 1 shows the list of main activities we find.
Set of actions for a given activity: These actions are determined manually
found from ATUS. The difference between actions and activities are based on
the activity tiers (1, 2, 3) reported in ATUS. The second column of Table 1
shows the actions included in different activities. We increase the granularity of
user events mainly to understand and study what actions may lead to appliance
usage or to another action that might result in appliance usage. Without this,
the exact properties of an appliance usage event can be missed.
Durations of actions: Since the action duration varies among individuals,
we use statistical distributions to represent these durations, and sample a value
from those distributions to assign an action duration. We use the activity dura-
tion information from ATUS to construct these distributions. We cannot create
a separate distribution for each person or use a single distribution for everyone.
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Table 2: Example action duration values for different groups of individuals

User group Action
Average

duration (min)
Action

Average
duration (min)

< 18 y/o Sleeping 360 Preparing food 22

≥ 18 y/o working male Sleeping 325 Preparing food 31

≥ 18 y/o working female Sleeping 322 Preparing food 32

≥ 18 y/o unemployed female Sleeping 333 Preparing food 35

< 18 y/o Eating 28 School 207

≥ 18 y/o working male Eating 34 Work 197

≥ 18 y/o working female Eating 33 Work 188

≥ 18 y/o unemployed female Eating 33 Job Search 96

Instead, we create multiple distributions to account for different user groups
for each action. Table 2 shows example values for action durations for differ-
ent groups. Based on the average values, each action instance samples a value
from an exponential distribution with the corresponding average. We obtain
these averages based on the weight values assigned to the individuals based on
demographic representations by ATUS data set.
Duration of activities: Since an activity is a composite (of individual actions)
object, we compute its duration as the total duration of its individual actions.

Appliance-related parameters These parameters show the list of appliances
and how they are associated with specific actions and activities, determined
by the statistical data from RECS. We then manually select the appliances
associated with a given activity, shown in Table 1. An appliance may not be
used for each instance of the activity it is associated to (probabilistic relation).

Probability-related parameters These parameters determine both the pos-
sible transitions between actions and activities, forming the connections in the
activity graph, and the probabilities of appliance usage events based on user
actions. These parameters depend on two factors 1) user gender and age, 2) user
employment status. We also consider time of day and day of week information
because the activities a user performs change highly based on time of day (morn-
ing vs. evening) or day of week (weekday or weekend). In this paper, we do not
make the distinction between days of week but consider time of day differences.
Action transition probabilities: These are based on the observed user actions
and how frequently they follow each other. For each action in an activity, we
count the number of actions following a given action to calculate the transition
probabilities, as shown in Equation 1. Since these probability values change for
each user group and time of day, we calculate separate values accordingly. We
use discrete time-of-day classification, i.e. morning, noon, and evening.

p(aij → aik) = pijk =
# action transitions from aij to aik in activity Ai

# total transitions from aij in activity Ai
(1)

The special case occurs when the activity that a specific action belongs to
terminates. Equation 2 revises Equation 1 by counting the instances where an
action aij in an activity Ai is followed by an action Akl in another activity Ak.
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Table 3: Example appliance triggering probabilities

Activity
Appliance
Couples

Family types
Single
male

Single
female

Couple
Couple
+1 child

Couple
+ 2 children

p(cooking → oven) 0.13 0.15 0.21 0.25 0.28

p(cooking → microwave) 0.52 0.53 0.49 0.51 0.51

p(cooking → dishwasher) 0.12 0.13 0.27 0.31 0.39

p(cleaning → washer) 0.26 0.33 0.59 0.76 0.91

p(cleaning → dryer) 0.23 0.28 0.52 0.67 0.81

pijt =
# transitions from aij to akl from Ai to Ak, i 6= k

# total transitions from aij in activity Ai
(2)

Activity transition probabilities: These are computed similarly to the pre-
vious case, except we consider when an activity ends rather than single actions.
The transition probabilities are computed in Equation 3, which is calculated for
each user group. To simplify and obtain a more compact model, we consider
activity transitions independent of the actions finishing an activity. We compute
the next activity independent of the last action of the current activity.

p(Ai → Aj) = pij =
# activity transitions from Ai to Aj

# total activity transitions from Ai
(3)

Appliance triggering probabilities: We use the appliance usage frequency
information from RECS to deduce the probability of using an appliance given
the current action/activity. For example, assume that the cooking activity takes
place twice in the activity graph of a user. But not all the kitchen appliances
are used in all the cooking activity occurrences. According to RECS, 8.7% of
the households use the oven twice a day, 17.3% use it once whereas 34.6% use it
only a few times a week. The appliances that RECS has these data stove/oven,
microwave, dishwasher, washer, dryer, portable loads. We determine these prob-
abilities based on the family size, e.g. single vs. couple, with or without children.
We demonstrate how we construct families from individual people in the next
section. We first calculate the average usage frequency of a given appliance and
then deduce the probability based on the time frame of this average. We use one
week as the time frame to compute these averages using RECS data set.Similar
to ATUS, we leverage pre-computed sample weights RECS provides to calculate
average values. We compute the appliance triggering probabilities for different
family sizes for a given activity as follows:

p(Ai → PLj |family type t) =
average usage of PLj of family type t

#instances of Ai over the time frame
(4)

where PLj is a specific appliance, t is an enumeration for family types. The
number of instances of Ai is counted based on the activity-appliance couples.
For example, possible number of cooking instances in a week is 21, whereas this
number is 7 for cleaning. Table 3 shows some examples of these values.
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Table 4: Family distribution percentages (%) of ATUS and RECS data sets

Single
male

Single
female

Couple
Couple -
1 kid

Couple -
2 kids

Couple -
3 kids

Couple -
3+ kids

RECS 9.87 13.18 33.53 17.14 14.47 7.11 4.70

ATUS 17.85 22.07 26.73 12.29 13.93 5.15 1.98

Table 5: Employment percentages (%) of the adults

Single
man

Single
woman

Couple
Couple -
1 kid

Couple -
2 kids

Couple -
3 kids

Couple -
3+ kids

Male 54.1 N/A 92.93 95.74 94.7 95.21 95.85

Female N/A 42.88 84.86 97.91 82.08 65.47 55.96

Combining Activity Graphs We construct different families based on ATUS
and RECS and first analyze the family statistics. We specify family types as
single (male or female) and couple (no child, 1-2-3 or more children) as in Table
4. These percentages are calculated based on only the listed family types, which
span more than 85% of the survey respondents. The family types are distributed
based on the numbers presented in Table 4 over all the houses. We obtain the final
percentages as the average values between ATUS and RECS. We also specify the
employment status of the adults in Table 5 for different family types, gathered
from ATUS as the duration of work activity is modeled using it.

Next, we combine the the activity graphs of individuals. If each graph is
mutually exclusive, we can simply add up the power profile of each person to
obtain the total consumption. But multiple instances of a single appliance can
coincide. Thus, we cannot simply add up the consumption values. To solve this,
we adopt a first come first serve solution. Assume that person x’s activity graph
leads to starting Api at time t, where Api has been in use by person y, which
started at time t−δ. If δ ≤ di

2 , where di is the execution duration of Api, the new

instance of Api is assumed as concurrent and discarded. If δ > di

2 , the incoming
instance is scheduled to be executed after the current instance of Api finishes.

5 Evaluation

This section first presents the power profiles we generate for families and then
shows a case study for a neighborhood with 50 houses covering a range of families.
The family types include single adults (male or female), couples without and
with 1 or 2 children. The appliance power consumption values, shown in Table
7, are taken from Home Appliance Energy Use data from General Electric [9].
Profiles are generated for 5 days to observe the daily changes. We use residential
power traces from Pecan Street database [11] to evaluate the effectiveness of our
model. We gather these traces for corresponding family types. We match the
time frames of the traces to the time frames of the generated traces. We select 5
consecutive days for each family type, randomly between 01-01-2014 and 06-01-
2014. Table 6 shows the summary of our data sources and how we use the data.
We incorporate multiple data sources (ATUS, RECS and GE) to build our user
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Table 6: Data sources and usage purposes summary

Data Source Usage Purpose Data Size Data Span

ATUS [17] Modeling activities 10000+ participants/year Entire US

RECS [8] Modeling appliance usage 110+ million participants Entire US

General Electric [9] Appliance power ratings N/A N/A

Pecan Street Inc. [11] Verification of power profiles 778 houses Austin, TX

Table 7: Appliance power consumption values [9]

Appliance Power (W) Appliance Power (W) Appliance Power (W)

Central HVAC 3000-5000 Hair dryer 1500 Dryer 3400

Vacuum cleaner 500 Oven 3000 Laptop 100

Dishwasher 1500 Washer 500 LCD TV 210

Microwave 1500 Toaster 1100 Lights 50-100/room

(a) Generated trace (b) Real trace [11]

Fig. 2: Single male house power profile

(a) Generated trace (b) Real trace [11]

Fig. 3: Single female house power profile

behavior model and compare it against the real power traces from Pecan Street
database. It is difficult to directly compare the exact values in generated vs.
real power traces since 1) the data we build our model on does not have direct
correspondence with Pecan Street database (activities + appliance statistics vs.
energy traces), 2) ATUS and RECS data spans the entire country, whereas Pecan
Street has data only from Austin, TX, 3) the appliance power ratings from GE
and Pecan Street do not match. Appliance power data from many houses in
Pecan Street are missing. Although the exact values may not match, our model
still accurately finds the peak demand times for both individual houses and a
neighborhood with several houses. We scale the appliance ratings based on the
peak values observed in generated vs. real traces and show that our model is
more accurate if the correct appliance ratings are used.
Individual Power Profiles Figures 2 and 3 show the power profiles of single
male and female houses. The first and second figures show generated and real
traces. Both adults are assumed to be working full-time. The generated traces
match the times of the power spikes of the real traces, where exact values do
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(a) with HVAC (b) without HVAC

Fig. 4: Generated power traces for couples with 1 child

(a) with HVAC (b) without HVAC

Fig. 5: Generated power traces for couples with 2 children - mother is working

(a) with HVAC (b) without HVAC

Fig. 6: Generated power traces for couples with 2 children - mother is not working

not match due to the reasons listed previously. The generated traces demon-
strate more spikes and higher maximum power consumption for female adult
households, which is also visible in the real traces.

Figures 4, 5 and 6 show the power profiles of couples with 1 child, 2 children
with the mother is working and stay-at-home (with and without HVAC). These
profiles show similar peaks, all higher than the couples only case as the families
with children use the appliances more often and spend more time at home. The
difference arises in terms of the frequency of peaks. In the case with stay at home
mother, we see the duty cycle behavior of HVAC spread throughout the day. The
appliances are not used only in the evenings but also during the day. Most of the
washer, dryer, dishwasher instances occur during the day because the appliance
usage probabilities are higher for the stay at home mother during the day. The
maximum power demand never exceeds 8kW since the appliance operations do
not coincide. In the case with working mother, appliances accumulate in the
evenings, leading to a larger maximum power demand, around 12kW.
Case Study: Neighborhood Energy Analysis One of the strengths of our
model is that it can capture the nuances between the power profiles of different
family types and show when the maximum power draws are likely to occur. This
is an important and very useful capability when studying the effects of total
power consumption during peak periods [2]. By creating several, reproducible
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Fig. 7: Total power consumption Fig. 8: Max voltage deviation

power traces, we significantly increase the scalability of such system analyses
and reduce the complexity to evaluate several cases with many homes.

Figure 7 shows the total power consumption of a neighborhood with 50
houses. The numbers of different family types are calculated based on Table
4. Comparing the real (straight) and generated (dotted) traces, we see that our
model matches the times of peak spikes, but not the exact values due to 1)
different appliance power ratings and 2) various small plug loads not included
in our model as we either could not associate any user activity with them or
did not find any usage data for them in large, long-term ATUS and RECS data
sets. We scale values based on the maximum observed in generated vs. real
traces and add an offset to account for the various plug loads. We show this
new trace with the dashed line in Figure 7. The scaled trace matches the peak
power times and obtains 38% absolute mean error, with minimum 0.25% error.
This shows that our model becomes more accurate once appliance power values
closely match the original appliances used. We also compute the correlation co-
efficient between generated and real traces. This coefficient is between 0.1-0.3
for individual houses, 0.45 for the neighborhood with original generated traces
and 0.62 with scaled generated traces. Our values have strong correlation with
real traces for aggregate consumption, by correctly detecting the power spikes.

We use this neighborhood profile to study voltage deviation. Deviation values
elevate with increased total consumption [2], thus, it is imperative to correctly
estimate both the times and the magnitude of the spikes. We use the grid sim-
ulator in [2] to compute the deviation values. We get the physical circuit as a
subset from one of EPRI’s openly released test circuits [1]. Figure 8 shows the
maximum deviations for both real and generated (scaled) traces. The deviation
values show significant correlation with the spikes in Figure 7. Our traces match
these high deviation events (captures 5/5), which generally occur during the
evenings. During these events, we get little or no error in voltage deviation.

6 Conclusion

Residential sector is a significant portion of the overall energy consumption in
the US. Recent studies propose several energy-aware automation and scheduling
solutions to address this. However, they need power profiles from a diverse set of
houses to test these solutions. To achieve this, we propose a user behavior model
to estimate the power demand of a house. We consider the features of both users
and appliances to create diversity across neighborhoods. We can form several
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house profiles with different energy needs in a reproducible way. We compare
the traces we generate against real data from Pecan Street. Our model matches
the trends observed in real data for both individual houses and a neighborhood
with 50 houses, by accurately estimating appliance usage times and thus peak
power times. We also show the effects of peak power spikes with a grid simulator.
Our model detects the high voltage deviation events observed with real data.
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