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Abstract—Modern power grid has evolved from a passive
network into an application of Internet of Things with nu-
merous interconnected elements and users. In this environment,
household users greatly benefit from a prediction algorithm
that estimates their future power demand to help them control
off-grid generation, battery storage, and power consumption.
In particular, household power consumption prediction plays
a pivotal role in optimal utilization of batteries used alongside
photovoltaic generation, creating saving opportunities for users.
Since edge devices in Internet of Things offer limited capabilities,
the computational complexity and memory and energy consump-
tion of the prediction algorithms are capped. In this paper
we forecast 24-hour demand from power consumption, weather,
and time data, using Support Vector Regression models, and
compare it to state-of-the-art prediction methods such as Linear
Regression and persistence. We use power consumption traces
from real datasets and a Raspberry Pi 3 embedded computer as
testbed to evaluate the resource-accuracy trade-off. Our study
reveals that Support Vector Regression is able to achieve 21%
less prediction error on average compared to Linear Regression,
which translates into 16% more cost savings for users when using
residential batteries with photovoltaic generation.

I. INTRODUCTION

Internet of Things (IoT) is a collection of sensing and

actuation that is supported by existing and growing Internet

infrastructure [1]. As an application for IoT, Smart Grid aims

to provide pervasive control for power grid [2]. This task

is accomplished by creating intricate applications involving

several elements in industrial and household environments.

The edge devices in these systems consist of embedded

computers that offer lower computational capabilities.

In addition to a shift in control potential, household users

are now capable of generation and storage of electrical energy.

For instance, the decreasing cost of solar photovoltaic devices

has rendered them as one of the most economical off-grid

generation methods [3], while other renewable energy sources

such as wind are also used. The main challenge of integrating

these sources is their intermittent and highly variable nature.

The ability of batteries to act as generators as needed with

volatile renewable energy resources can help smooth out the

renewable output [4]. Researchers expect batteries to be more

commonly used in houses to store energy generated by off-

grid methods (i.e., solar PV or small wind turbines). This

method can help reduce the dependency of users to the grid by

increasing the consumption of locally generated energy from

30% up to 70% [5]. Evaluations show that battery storage

is already economically viable for small PV systems under

different future pricing scenarios, and it will become even

more critical with the current trends in electricity pricing [6].

To optimally use batteries alongside renewable resources

in a multi-tier pricing scheme, a fairly accurate prediction

of household power consumption is required [4]. Smart Grid

systems have millions of consumers and devices [7], it is

technically challenging to implement these personalized al-

gorithms centrally, i.e., with cloud based applications or by

utilizing utility company’s infrastructure.

Household power profile follows a sporadic pattern which

is difficult to predict [8]. We made an information theoretical

analysis and showed that household demand prediction is

expected to have very low accuracy due to the highly random

human behavior (Section V-B1). However, we also show that

any improvement in accuracy results in significant cost saving

for the users by optimal battery utilization.

A local power prediction algorithm implementation is im-

plemented at the house level and thus needs to use inexpensive

edge devices, e.g. small embedded computers, to collect and

process data. These devices tend to have limited memory and

processing capabilities. This makes the prediction task even

more challenging, as most of the previous works on household

power prediction ignore computational complexity and local

embedded implementation feasibility of their algorithms [9]

[10]. We fill this gap by analyzing accuracy, training time, and

energy consumption of state-of-the-art prediction algorithms

such as Linear Regression (LR), and comparing them to

Support Vector Regression (SVR) [11] models for 24-hour

daily power demand forecast. To assure feasibility of local

implementation for these models, we only use recent power

consumption and weather data as inputs. Our study reveals that

SVR is able to achieve 21% less prediction error compared to

LR, while LR shows better scalability characteristics for larger

training sets. We show how this increased accuracy translates

into 16% more cost savings for users through solving the

optimal load flow problem for households that use batteries to

smooth out solar generation variability. Also, we investigate

the resource requirement of these prediction algorithms by

implementing the models on a Raspberry Pi 31 device.

1We choose this platform because it is available at low cost, widely used
within similar works, and offers great software and community support [12].



II. RELATED WORK

A recent survey on electrical power demand forecasting

by Hernandez et al. [8] classifies several methods for power

consumption prediction. Their analysis scope mostly contains

works focusing on aggregated power consumption, such as at

city or country level. They also emphasize the challenge of

prediction for individual users due to sporadic nature of time

series. There are several other works which contain solutions

and models for aggregated short-term load forecasting2 and do

not cover individual user level prediction [13] [14] [15].

Among the works on individual user level power prediction

in smart grid, the goal is to maximize the benefit of the utility

company [9] [10] [18]. Dudek [14] measures the running

time of several power prediction algorithms on a desktop

system. However, the energy draw of each algorithm and

their suitability for a small, resource-limited edge device is

not studied. Hence, these algorithms are either based on

offline optimization methods, or they overlook the analysis

of computational requirements of their algorithm, which itself

casts doubt on their suitability for embedded edge devices.

Mateo et al. [16] and Edwards et al. [17] compare several

machine learning algorithms by their capability to predict short

term power consumption of a building. However, both these

works lack analysis for computational demand of their algo-

rithms, as well as potential cost savings. Furthermore, [17] is

based on data from an experiment which simulates household

occupancy with predefined behavioral patterns, which may not

represent real household usage.

Logenthiran et al. [19] develop a day ahead demand side

management algorithm which facilitates peak shifting in daily

power profile. Their method does not involve savings from

optimal battery usage, and study of limitations in embedded

implementation is not covered. Wang et al. [20] present a

power consumption prediction algorithm that is used alongside

a control method for photovoltaic generation and batteries,

but does not mention the computational requirement of their

approach. Hossa et al. [21] describes the impact of power

prediction on user’s actions and electricity cost, but they do not

study the computational demand of their algorithm or whether

the algorithm suits embedded environments. Their prediction

requires one year weather data, which may not be readily

accessible at the house level, and requires large data storage.

Support Vector Regression (SVR) [11] has been used in

time series prediction algorithms spanning several application

domains [22] [23]. However, the models are usually trained

offline. Therefore, the processing and memory demand of

algorithms are not thoroughly analyzed.

Bajaj et al. [24], Hsieh et al. [25], and Haigh et al. [26] pro-

pose methods for implementing support vector classification

in resource limited environments, however error for a power

prediction application (or any other regression scenario) as

well as algorithm energy consumption is not discussed.

Even though power consumption prediction has been sub-

ject to several studies, the main focus has been on creating

2Since household consumption mainly comprises of daily or weekly usage
patterns, the demand prediction in this application falls beneath short-term
load forecasting.

elaborate methods that achieve the highest level of accuracy

possible within a dataset. However, we argue that simpler

models that achieve lower accuracy levels can provide cost

savings for residential users by optimizing energy consumption

and battery storage. Lower computational requirement of these

models means that these methods can be implemented locally

on edge devices.

III. PREDICTION MODEL

Many residential control applications, such as the optimal

battery economic dispatch problem, rely on prediction of fu-

ture power consumption of the household [4]. In Section II we

discuss different methods that can be used to accomplish this

task. We choose linear regression (LR) as a basic prediction

model and baseline. We select LR because of its simple and

low complexity solution, and compare it with support vector

regression prediction. The latter is capable of predicting non-

linear usage patterns that are specific to each house. In this

section we explain the implementation these methods.

The goal is to predict power demand profile P (d) during

the course of day d. This profile contains power predictions

for every hour of a day. We use average power consumption of

every hour in previous day and latest available weather data as

inputs to our prediction model. To further tune our model we

use time of day and day of week attributes to accommodate

different usage patterns at different times. Equation (1) shows

the general model that we seek to find,

P̂ (d) = f (P (d− 1), T,H,CC,DP,AT, ToD,DoW ) , (1)

where T , H , CC, DP , and AT correspond to weather data

(temperature, humidity, cloud cover, dew point, and apparent

temperature), ToD and DoW show time of day and day

of week. P (d) consists of a 24th Markov order of 1-hour

separated power consumption data, collected from day d,

P (d) = {ph(d, 0), ph(d, 2), · · · , ph(d, 23)}, (2)

where ph(d, t) corresponds to power consumption at day d

during hour t. We use 24 separate models for each hour of the

day, and train each model individually. By this mean, power

consumption for every hour in day d is predicted by one of the

24 models with horizon between 1 hour to 24 hours. We need

at least 24 models to be able to forecast power consumption

throughout a full day.

To fully capture the dynamic nature of the usage pattern,

we need to update the predictor function frequently. We define

parameter Ltest as the number of days that a model remains

valid before getting updated with the newest available data. In

each update, we use the past Ltrain days of data for training.

We compare two methods for model training, linear regression

(LR) and support vector regression (SVR), that are described

in the following subsections.

A. Linear Regression (LR)

Linear regression (LR) model predicts P̂ (d) as a linear

combination of all input variables. Equation (3) shows the

general LR model. In this equation y is the predicted variable,

which is defined as a linear combination of xi predictors. The



goal in the training phase is to determine β parameters that

achieve lowest error.

ŷ = β0 + β1.x1 + β2.x2 + ...+ βn.xn (3)

In this problem, the predicted variable is P̂ (d) which is

predicted using ph(d − 1, t) data, weather data, and time.

This simple model has been used in several applications to

predict linearly codependent variables described in (1) and

(2). Although household power consumption data may not be

ideally described by a linear model, we use this prediction

method as a baseline to compare improvements that can be

achieved using SVR (section III-B).

B. Support Vector Regression (SVR)

Support vector regression is a prediction model that can

extract linear or non-linear relations between input and output

variables. The advantage of SVR over other models for pre-

diction is that it minimizes the structural risk, as opposed to

minimizing empirical risk or training error [11]. This results

in better generalization to unforeseen data in the test phase.

1) Linear SVR: The relation between input and output of

a linear model can be formulated as

f(x) = 〈w, x〉+ b (4)

where x is input, 〈., .〉 corresponds to dot product, and w and b

are the parameters that define the characteristics of the model

[11]. In order to find these parameters we have to solve an

optimization problem:

minimize
w

1

2
‖w‖

2
+ C

l
∑

i=1

(ξi + ξ∗i )

subject to yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗

i ≥ 0.

(5)

In (5), ε denotes how much each predicted f(xi) is allowed

to deviate from yi, and C > 0 determines the penalty for these

deviations. We can tune these parameters to trade between

overfitting and generalization ability of the model. The details

of the solutions will not be discussed here due to limited space,

readers can refer to [11] for a more detailed explanation of

solution to the optimization problem.

2) Non-Linear Extension: Non-linearity in support vector

regression is achieved by mapping the input space into a higher

dimensional feature space, and then applying the optimization

problem that was described in the previous section [17]. In

this work we use Radial Basis Function (RBF) kernels, as

they achieved lowest prediction error for our power prediction

scenario. The modified problem constraints and the RBF

kernel are defined in (6).

yi − 〈w, ϕ(xi)〉 − b ≤ ε+ ξi

〈w, ϕ(xi)〉+ b− yi ≤ ε+ ξ∗i

K(xi, xj) = exp(−γ ‖xi − xj‖
2
)

(6)

3) Parameter Selection: The SVR model that was described

in the previous section is mainly identified by ε, maximum

allowed deviation from predicted value, C, the penalty as-

signed to these deviations, and γ, the kernel scaling parameter.

We use cross-validated grid search [17] for each house in the

data set, and found that ε = 0.1, C = 10, and γ = 0.001
achieve the best average result over all houses. Since we

have implemented this model in an embedded environment,

the runtime of prediction training is important and we cannot

perform grid search for each training.

IV. APPLICATION: OPTIMAL BATTERY FLOW PROBLEM

PV installations, along with batteries, have become an

economically viable option when exploiting the current trends

in electricity pricing (e.g. time of use pricing) to provide

monetary savings [6]. Smart control algorithms, such as op-

timum battery flow solutions, are required to maximize the

benefits of these systems. Akyurek et al. [4] describes an

optimal and low complexity control algorithms that smooths

out the intermittent output from renewable electricity sources,

while storing extra generated energy to minimize cost. The

algorithm takes house power consumption profiles as an input.

Although accurate time series prediction is a computationally

heavy operation, using a powerful general purpose device in

each house for this purpose is not cost-effective. Instead, we

propose to perform time series prediction on resource-limited

edge devices and use the optimal battery flow problem as a

viable application that can tremendously benefit from such

prediction. In this application, the controller requires the power

demand forecast along with expected solar generation for the

upcoming day (next 24 hours) in the beginning of every day.

The optimization is described by:

minimize
bat

Cost(bat, loadForecast, pvForecast)

subject to LPower < bat < UPower

LCharge < SoC(bat) < UCharge.

(7)

In (7), battery flow is denoted by bat and it is constrained

by battery power bounds, LPower and UPower. Battery

state of charge is also marked by SoC which is bounded

by battery energy bounds, LCharge and UCharge. The true

value for consumed power on each day along with optimal

battery flow, bat, solar generation prediction (as explained

in V-A), pvForecast, and power prediction for the day,

loadForecast, is then used to calculate the savings from using

these algorithms. The results are reported as cost reduction

compared to the case were batteries are not used. Figure 1

shows the prediction, optimal battery flow solution, and cost

saving computation.

A. Cost Definition

We use quadratic cost that approximates multi-tier pricing.

This method has been used throughout literature (i.e., [27]

[4]), as it encourages a flatter profile and it is employed by

utility companies. We incorporate the same method from [4]

and use prices from San Diego Gas & Electric [28]. We report

cost reduction as a percentage of the actual cost.
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B. Algorithm Overhead

Since our goal is to run prediction algorithms on embedded

edge devices, we need to limit the computational overhead

of the prediction algorithms. The algorithm that is used to

solve the battery flow problem matches this criteria, as it

has O(n2) algorithmic complexity, where n corresponds to

the maximum prediction horizon. Since n is bounded in our

implementation (n = 24 hours), the overhead of this algorithm

will be dominated by more complex SVR and LR predictors.

V. RESULTS

In this section we present the detailed evaluation of the

estimation methods presented in the previous section. We

implemented these methods on an embedded computer (rep-

resenting a typical edge computing device) and compared

them in terms of accuracy, computational overhead and energy

consumption. Computational overhead analysis is crucial since

embedded devices offer limited CPU power and memory

availability. Also, energy efficiency of embedded algorithms

is important due to pervasiveness of embedded edge devices

in IoT and scalability concerns.

While other works present Least Square Support Vector

Machines (LS-SVM) [16] [17] and Neural Networks [18] [13]

as accurate demand prediction algorithms, our initial analysis

of runtime and memory requirements of these algorithms

showed that they demand large datasets and abundance of

processing power to achieve such accuracies. We therefore

excluded these methods from our analysis.

A. Methodology

We implement our algorithms on a Raspberry Pi 3 device

as an embedded testbed. We choose this platform as it is

available at low cost, widely used within similar works, and

offers great software and community support [12]. We use

real residential power consumption and solar generation traces,

obtained from Pecan Street dataset [29]. This dataset contains

power consumption and solar generation of multiple houses

with 15 minute granularity. To assure the generalizability of

our conclusions, we compute the averages of statistics over 47

different house (4 of which include solar generation data) from

Pecan Street power consumption time series to ensure that our

selection covers sufficient variation across houses. Each house

is represented by approximately 2 years of data. Since solar

prediction is not the subject of our work, we add 14% noise

to the real solar trace to simulate prediction with 14% error,

which according to literature [30] is reasonable. We do not

investigate the effect of solar prediction accuracy in this work,

as it has been investigated by literature thoroughly [30], and

instead focus on power consumption time series prediction and

its impact on residential energy control

We measure the power prediction accuracy with normalized

mean absolute error (NMAE). Equation (8) shows the error

formula for predicting a vector y of length k (corresponding

to power consumption time series) using the prediction vector

ŷ. This equation shows how to present the error as a percentage

of the average of the predicted variable.

NMAE(%) =

√

∑
k

i=1

∣

∣ŷ(i)−y(i)
∣

∣

k

average(y)
∗ 100 (8)

In order to measure energy consumption of each method, we

insert a 0.1Ω shunt resistor in the supply line and measure the

voltage and current delivered to Raspberry Pi 3. We subtract

the idle energy consumption from measurements to achieve

the net energy draw of each method.

B. Model Accuracy

1) Information Theoretic Redundancy Analysis: As was

mentioned before (Section III), prediction of power con-

sumption over the course of day d is calculated using 24

models with horizons varying from 1 hour to 24 hours. In

this subsection, we analyze the predictability of predicted

sequence, P (d) given P (d−1) as predictor, using redundancy

metric. We calculate redundancy by

Redundancy =
I(P (d), P (d− 1))

H(P (d)) +H(P (d− 1))
, (9)

where I is the mutual information, and H is the entropy. Fig-

ure 2 shows the redundancy for different prediction horizons.

In this figure, each vertical bar corresponds to a different

house and the prediction horizon varies along the y-axis.

Warmer colors show predictability, while blue corresponds to

randomness. This figure allows us to gain an insight on how

predictable power consumption of each house is given data

from the day before. Ideally a perfect forecast can be obtained

if the information theoretical redundancy is 1 and a value of

0 indicates no prediction is possible due to randomness. How-

ever, the redundancy values are very small for almost all of

the houses that are available in this dataset, except for shortest

horizon (which corresponds to persistence). Different houses

show different predictability behavior, which will translate in a

wide range of possible prediction errors. This also means that

the expected prediction error is high. Our various experiments

with different predictors confirm this analysis. However, we

also demonstrate that every improvement to the prediction

accuracy translates to considerable cost savings (Section V-C).

2) Accuracy vs. Training Set Length: First, we analyze the

effect of training set length in the accuracy of the model. The

training set consists of D days worth of power consumption

data for 24 hours of the day, as well as environmental data for

each day. Each trained model is tested for 30 days forecast,

and the error is averaged over this period. Figure 3-(a) shows

the effect of increasing training set length D on the accuracy

of each model, which is characterized by NMAE (Equation
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(8)). We observe that increased training length reduces error

and improves accuracy of both models. However, using the

same training length, SVR is able to achieve 21% less error

on average compared to LR. In the highest accuracy case (30

day training length), SVR predicts with 14% less error. In the

next subsection we show that increased accuracy translates

into cost savings for the user.

C. Cost Savings

In this subsection we show the effect of model accuracy

in providing cost savings for users by utilizing the optimal

battery load flow algorithm with PV generation, discussed

in Section IV. The predictions are input for ECO-DAC [4]

which efficiently solves the load flow problem, and estimates

the savings by comparing the projected usage pattern to the

actual power consumption time series during that day. Solar

prediction accuracy is fixed at 14% (see section V-A) as

our goal here is to explore prediction accuracy of power

consumption time series and its impact on residential energy

management.

1) Cost Reduction vs Battery Capacity: This section in-

vestigates the effect of battery capacity on energy savings for

users, averaged over all participating houses with solar genera-

tion over 31 days. Figure 3-(b) shows the cost reduction for LR

and SVR prediction algorithms, compared to the hypothetical

case were we have can forecast with 100% accuracy (Perfect

Prediction) and the case with prediction based on 24-hour

persistence (predicting ph(d, t) = ph(d − 1, t) for all t). We

cannot use shorter persistence because we require the data 24

hours in advance to solve the optimal load flow problem. We

observe that although low predictability of power time resulted

in high error, both LR and SVR models still provide a large

cost saving compared to persistence.

2) Cost Reduction vs Accuracy: Since we are using a time

series consisting of predicted power consumption values to

schedule optimal battery load flow, we should analyze the

relationship between prediction accuracy and cost savings. For

this experiment, we fix the battery capacity to 20 kWh, and

average the cost savings over one month period. Figure 3-(c)

shows the cost reduction as a function of prediction accuracy

for both SVR and LR models. We also mark the best fitted

linear line over the data to emphasize the general trend. It is

evident that as the model becomes more accurate (less error)

the cost saving increases, and vice versa.

D. Algorithm Overhead Analysis

One of the crucial aspects of programs running on em-

bedded edge devices is their computational overhead. This

section analyzes the overhead of different prediction models by

comparing their runtime on our embedded testbed (see V-A).

1) Training Runtime vs. Training Set length: It is expected

that model training time should increase as the training set

length increases. Figure 3-(d) proves this behavior on our

testbed. The y-axis in this figure is plotted in logarithmic

scale. It is clear that training time for SVR in almost all cases

is larger than LR, and it increases with a higher rate as the

training time rises. However, as figure 3-(a) shows, prediction

error decrease rate is lower for models with training length

more than 15 days. This demonstrates that using larger datasets

may slightly reduce prediction error. But this reduction sub-

stantially increases the computational overhead.

2) Memory Requirement vs. Training Set length: IoT appli-

cations rely on several embedded computers with small avail-

able memory. Since prediction performance depends highly

on training dataset (consisting of historical data), memory

size of a device can quickly become a bottleneck for an IoT

application. We analyze memory requirement of the training

stage of both SVR and LR models. We use a separate process

to monitor the memory required by the training phase, and

report the maximum observed value that is averaged over sev-

eral experiments on different house data. Figure 3-(e) shows

the maximum memory used during training as a function of

training set length for both LR and SVR models. Memory

requirement for small training sets is almost similar for both

models. However, as the models get larger, SVR uses larger

memory for the training phase, up to 50MB. This requirement

can become a serious disadvantage for some edge devices,

since they may have limited physical memory or multiple

applications competing for the available memory space.

E. Energy Consumption

Energy is another important constraint of embedded edge

devices, which have limited power budget, or have to rely on

batteries during outages. To address this issue, we measured

the energy consumption of the training phases of both SVR

and LR models. The results are presented in Figure 3-(f),

which shows that apart from the small and low accuracy cases,

SVR always requires more energy on average per training

forecast model. The gap between the energy requirement of

SVR and LR gets bigger as the training set grows. This

observation raises concerns about SVR’s scalability for using

bigger datasets on edge devices. However, within the analyzed

model sizes, all models demand an amount of energy that is

well within the battery capacity of a battery-powered device.

By comparing the energy consumption values to the capacity

of a normal cell phone battery (i.e., 2000mAh), we observe

that even the largest analyzed SVR model (training set length

30 days) is trained using only 0.01% of the battery capacity.

VI. CONCLUSION

We have analyzed SVR and LR prediction models in terms

of their accuracy, runtime, memory requirement, energy con-
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sumption, and their capability to provide cost saving through

optimal load flow problem in households with batteries and

solar generation installed. We showed that although the house-

hold power time series has a sporadic nature (which translates

into high prediction error), we are able to use these models to

forecast 24-hour power consumption. Our study reveals that

SVR is able to achieve 21% less prediction error compared to

LR, while LR shows better scalability characteristics for larger

training sets. We demonstrate how this increased accuracy

translates into 16% more cost savings for users through solving

the optimal battery load flow problem. Our work proves that

both models are suitable for IoT applications implemented on

embedded edge devices. However, for larger scale problems

LR showed better scalability characteristics compared to SVR,

while SVR’s predictions were more accurate.

ACKNOWLEDGMENT

This work was supported in part by TerraSwarm, one of six

centers of STARnet, a Semiconductor Research Corporation

program sponsored by MARCO and DARPA and in part by

ARPA-E NODES project DE-FOA-0001289.

REFERENCES

[1] C. Perera et al., “Context aware computing for the internet of things: A survey,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[2] H. Farhangi, “The path of the smart grid,” IEEE Power Energy Mag, vol. 8, no. 1,
pp. 18–28, January 2010.

[3] Renewables 2015 global status report, 2015. [Online]. Available:
”http://www.ren21.net/”

[4] A. S. Akyurek et al., “Eco-dac energy control over divide and control,” in IEEE

SmartGridComm, Oct 2013, pp. 666–671.
[5] Battery Energy Storage for Smart Grid Applications, 2013. [Online]. Available:

”http://eurobat.org/”
[6] J. Hoppmann et al., “The economic viability of battery storage for residential solar

photovoltaic systemsA review and a simulation model,” Renewable and Sustainable

Energy Reviews, vol. 39, pp. 1101-1118, 2014.
[7] Y. Yan et al., “A survey on smart grid communication infrastructures: Motivations,

requirements and challenges,” IEEE Communications Surveys Tutorials, vol. 15,
no. 1, pp. 5–20, First 2013.

[8] L. Hernandez et al., “A survey on electric power demand forecasting: Future trends
in smart grids, microgrids and smart buildings,” IEEE Communications Surveys

Tutorials, vol. 16, no. 3, pp. 1460–1495, Third 2014.

[9] V. Almeida et al., “Hierarchical time series forecast in electrical grids,” in ICISA

2016. Springer, 2016, pp. 995–1005.
[10] A. Tascikaraoglu and B. M. Sanandaji, “Short-term residential electric load

forecasting: A compressive spatio-temporal approach,” Energy and Buildings, vol.
111, pp. 380–392, 2016.

[11] A. Smola and V. Vapnik, “Support vector regression machines,” Adv Neural Inf

Process Syst, vol. 9, pp. 155–161, 1997.
[12] M. Richardson and S. Wallace, Getting started with raspberry PI. ”O’Reilly

Media, Inc.”, 2012.
[13] L.-G. Chen et al., “Group-based chaos genetic algorithm and non-linear ensemble

of neural networks for short-term load forecasting,” IET GENER TRANSM DIS,
vol. 10, no. 6, pp. 1440–1447, 2016.

[14] G. Dudek, “Pattern-based local linear regression models for short-term load
forecasting,” ELECTR POW SYST RES, vol. 130, pp. 139–147, 2016.

[15] A. Kavousi-Fard et al., “A new hybrid modified firefly algorithm and support vector
regression model for accurate short term load forecasting,” EXPERT SYST APPL,
vol. 41, no. 13, pp. 6047 – 6056, 2014.

[16] F. Mateo et al., “Machine learning techniques for short-term electric power demand
prediction.” in ESANN, 2013.

[17] R. E. Edwards et al., “Predicting future hourly residential electrical consumption:
A machine learning case study,” Energy and Buildings, vol. 49, pp. 591–603, 2012.

[18] A. Songpu et al., “Domestic demand predictions considering influence of external
environmental parameters,” in IEEE INDIN, July 2015, pp. 640–644.

[19] T. Logenthiran et al., “Demand side management in smart grid using heuristic
optimization,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1244–1252, Sept 2012.

[20] Y. Wang et al., “Adaptive control for energy storage systems in households with
photovoltaic modules,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 992–1001, 2014.

[21] T. Hossa et al., “The comparison of medium-term energy demand forecasting
methods for the need of microgrid management,” in IEEE SmartGridComm. IEEE,
2014, pp. 590–595.

[22] T. Hansen and C.-J. Wang, “Support vector based battery state of charge estimator,”
J. Power Sources, vol. 141, no. 2, pp. 351 – 358, 2005.

[23] Y. Bao et al., “Multi-step-ahead time series prediction using multiple-output
support vector regression,” Neurocomputing, vol. 129, pp. 482 – 493, 2014.

[24] N. Bajaj et al., “Reduction of memory footprint and computation time for
embedded support vector machine (svm) by kernel expansion and consolidation,”
in IEEE MLSP, Sept 2014, pp. 1–6.

[25] C.-J. Hsieh et al., “A divide-and-conquer solver for kernel support vector ma-
chines.” in ICML, 2014, pp. 566–574.

[26] K. Z. Haigh et al., “Machine learning for embedded systems: A case study,”
Technical Report BBN REPORT 8571, BBN Technologies, MA, 2015.

[27] K. Worthmann et al., “Distributed and decentralized control of residential energy
systems incorporating battery storage,” IEEE Transactions on Smart Grid, vol. 6,
no. 4, pp. 1914–1923, July 2015.

[28] San Diego Gas and Electric, San Diego Gas and Electric, 2016. [Online].
Available: http://www.sdge.com/

[29] Pecan Street Dataport, Pecan Street Inc., 2016. [Online]. Available:

http://www.pecanstreet.org/

[30] A. Yona et al., “Application of neural network to one-day-ahead 24 hours
generating power forecasting for photovoltaic system,” in ISAP, 2007,
Nov 2007, pp. 1–6.


