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Abstract—Datacenters house massive databases and applica-
tions to provide business decision support and cloud services
where commercial success is contingent on timely responses.
The servers that these tasks run on dissipate a lot of power,
requiring equally powerful cooling systems to maintain a safe
and efficient temperature level. In a typical enterprise server,
server chassis fans can generate vibrations that are powerful
enough to degrade the performance of data-intensive workloads.
Our methodology measures and reproduces real-life vibrations
on a rack server to evaluate the performance of different hard
disks. Effective hardware management relies on an accurate
understanding of these devices and their interactions to mitigate
any performance degradation and meet thermal constraints.
While current strategies focus on managing processing resources,
at the expense of more data-dependent workloads, our work ap-
proaches server efficiency by targeting the cooling-performance
relationship in conjunction with other dependencies between
power, thermal, and cooling. We extract a model from common
database benchmarks based on expected resource utilization and
corresponding cooling needs, while considering these mechanical
disturbances. Our proposed strategy uses convex optimization
to maintain thermal constraints at all times, while reducing the
energy consumption of a server by 65% compared to basic PID
controllers, or by 19% in comparison to advanced hardware
management techniques proposed in literature.

Index Terms—server modeling, database performance, vibra-
tions, thermal management, fan cooling, convex optimization.

I. INTRODUCTION

ENTERPRISE servers generate profit for their operators
by delivering data and computing for a wide range

of concurrent applications at high performance. They serve
simultaneous requests from multiple clients (e.g. in big data
and cloud computing services) while guaranteeing a quality
of service (QoS) for each one. The QoS metric for different
applications may vary - e.g. data throughput for online trans-
action processing (OLTP) database operations [1], or response
time for interactive web applications, but as developments in
processing power have advanced far ahead of storage and
communication, many high-performance services are now I/O
bound. Their datasets are primarily stored on traditional disk
media, and partially cached in solid state drives and physical
memory [2]. Datacenters rely on many drive types to maintain
these different tiers of storage. - e.g. the most mission-critical
data is stored in Tier 1, the majority of current business data is
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in Tier 2, and archival storage is in Tier 3 [2]. Tier 2 currently
comprises the largest proportion of current data that needs
to be readily accessible (i.e. non-archival), and is commonly
fulfilled by either Serial Attached SCSI (SAS) or Serial ATA
(SATA) drives. They differ greatly in manufacturing tradeoffs
in terms of mechanics, materials and electronics [3] - the
more robust SAS drives are reserved for more expensive
deployments. There are emerging storage strategies that bypass
hard drive performance issues to recover high access speeds,
such as RAMCloud [4], which divides and distributes datasets
across physical memory in multiple machines. However, even
these approaches still ultimately rely on hard drives for large
scale data storage.

To maintain the integrity of hardware components, pro-
cessors manage workload scheduling and on-chip thermal
management dynamically, while powerful server chassis fans
work in combination with the building HVAC or passive heat
removers to maintain a thermal set point [5]. The power
consumption of these fans grows cubicly with the speed
settings [6]. There are efforts to reduce datacenter cooling
power by reconfiguring rack organization (e.g. hot/cold aisles
[7]), creative chillers, and task allocation across multicore
processors [8] and even room placement [9]. In an individual
server, the largest power consumers are the processor chip
and the cooling subsystem (we measured 37% and 29%
respectively). In a typical datacenter of 20,000 servers at a 1.5
power usage effectiveness (PUE), 24% of its monthly budget
goes towards the utility bill [10]. Any improvement in the
server and auxiliary energy consumption (cooling, etc) can
dramatically lower power budgets, improve service reliability
in case of power instabilities, and ultimately improve profit
margins for the datacenter operator [11].

We focus on a mainstay of server workloads - database
services. Database software is written assuming that underly-
ing hardware resources including CPU cycles, memory access
and IO bandwidth are fully available. However, the operating
context may limit this resource availability - e.g. power caps
or thermal constraints are aspects of the physical environment
that can limit software application behavior. In this work,
we address a critical source of data performance degradation
that is often neglected. Mechanical disturbances generated by
the cooling system can cause temporary crashes or misses
in spinning storage systems, which in turn inflate workload
execution times and server uptime electric bills [12]. Even
small disk latencies can cascade into large effects on final
application performance - 5% disk latency can lead to over
40% slowdown in the total performance [13], while others
have measured a 60% disk delay leading to 170% final delay
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in a database query execution [12]. These transient problems
can be very difficult to diagnose in deployment or to replicate
in a lab setting without the correct surrounding environmental
factors. They are also neglected by existing thermal models
and management policies.

Since current enclosure, cabinet and raised-floor room
designs cannot fully eliminate vibrations [13], we turn to
software-based detection and control. Enterprise servers al-
ready have a side-band “service processor” to monitor hard-
ware sensors, execute power management, and log mainte-
nance events, accessed via the Intelligent Platform Manage-
ment Interface (IPMI). This would be an appropriate platform
to detect vibrations from the fan controller and respond
accordingly. Orthogonal to mechanical upgrades, a software
update allows for fast, low-cost adaptation.

Fortunately, though database workloads can be highly de-
manding of the hardware platform and increasingly complex in
optimization, they are also fairly well-known and predictable
at scale [14]. By modeling the workloads in terms of their
resource consumption, server operators can predict the appli-
cation’s needs and manipulate the operating conditions such
as temperature and core availability to improve performance.
Most current strategies focus on manipulating processing
resources such as multi-core task scheduling and frequency
scaling. Notably, our work approaches the server efficiency
problem by targeting the cooling-performance relationship.
Our results are based on real physical telemetry of a late-model
multi-threaded, multi-core server processor running a standard
database benchmark suite (TPC-H [15]). The proposed server
model and control policy demonstrate up to a 3x speed up over
state of the art policies, leading to 19-65% energy reduction
while still meeting thermal constraints.

II. RELATED WORK

Here, we review three main research areas that around
server data performance as supported by hard disk drives. First,
we identify database applications representations in terms of
hardware utilization and data accesses. Second, we discuss
existing physical and mechanical designs that affect hard drive
performance in datacenters. We close by summarizing state of
the art power, thermal and cooling policies for servers, and
discuss our contributions to the area.

A. Database Workload Modeling

Database performance can be quantified and analyzed many
different ways. End-to-end metrics such as total execution time
are used to signal critical failures or crisis status [14]. For
a more detailed understanding, applications can be divided
into phases of software demands and elemental operations,
but the complexity of database platforms necessitate the use of
machine learning techniques rather than relying on expert de-
sign [16]. To predict total execution time of separate database
queries using design-time characteristics, some have found that
clustering techniques out-perform regression for multi-variate
feature sets [17]. An orthogonal method of representing work-
loads is to inspect their interactions with hardware resources,
which lends more naturally to hardware management policies.

For example, a particular query behavior can be described with
microarchitectural statistics (e.g. IPC and cache-miss), and
transitions between behavior can be modeled with a Markov
decision process, leading to thermal management decisions
[18]. A query can also be described in terms of the size,
location, and frequency of disk accesses [19], [20]. These
policy solvers choose optimal execution plans assuming ideal
drive performance; if drive throughput is affected by external
vibrations, solver results may no longer be naccurate.

B. Mechanical considerations: shock and vibration

Vibrations and shock can have significant detrimental ef-
fects on hard disk drive operation [21], [22]. Many server
vendors and large customers have made design improvements
in drive enclosures [3], [23], server chassis [24], racks [25],
and even raised-floor rooms [13], [26], to mitigate vibrations
and preserve drive data integrity. These improvements include
sturdier material choices, physical re-organization of vibration
sources (fan arrays, hard drives), and signal processing to
cancel sensed vibrations. The vibration protections only target
well-known sources such as the spinning hard drive motors
themselves, physical drops, and HVAC building cooling sys-
tems [27]. Their success metrics are geared towards lowering
hard drive failure rates, generally caused by head crashes (i.e.
when the read-write head makes contact with the disk platters,
causing irreverible damage) [28]. Liquid cooling [29], [30]
would reduce mechanical disturbances to the system, but are
prohibitively expensive for today’s commodity systems. To our
knowledge, there are no solutions currently in the market that
account for the persistent, dynamically changing vibrations
generated from fan cooling within the server. Concurrently,
there are no metrics that quantify vibrational effects in terms of
instantaneous but non-lasting drive performance degradation.

C. Power, Thermal and Cooling Management

The largest power consumers in servers are the processor
chip and cooling subsystem. Fans have a cubicly growing
motor power consumption profile [6], while processor leakage
power grows quadratically with increasing temperature (i.e.
lower fans). For a fixed workload, there is a single optimal
point where some fan speed achieves the lowest combined
processor leakage power and fan motor power [31]. High,
fluctuating temperatures are correlated with poor drive relia-
bility [32], [33]. We show that the observed disk performance
degradation is likely due to interactions with the cooling sys-
tem, and not temperatures per se. To reduce the thermal load,
the processor can gate the clock or perform dynamic voltage
and frequency scaling (DVFS), at the cost of direct reduction
in performance [34]. In some workloads, frequency scaling
may have unexpected effects - what is optimal from the core’s
perspective may not yield desirable results for the larger sys-
tem if the performance bottleneck is actually elsewhere [35].
For cooling, a standard industrial policy proportional-integral-
derivative (PID) control [36], which some newer solutions
are based on [37]. Task assignment can be done with some
awareness of datacenter physical layout [38], [39], but these
techniques fail to account for the cooling interactions at the
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lower level of server fans. Traditionally, the thermal effect
on performance is only measured in terms of core compute
speed [34], even by studies of disk-heavy database query
performance [40]. We assert that even when thermal is not
considered an issue by conventional standards (e.g. high tem-
perature), data performance can still suffer, because cooling
has a significant side-effect - existing work has shown that
internal server fans can negatively impact drive throughput
by anywhere between 60-88% [12], [41]. A comprehensive
understanding of the system enables model-predictive control
to maintain a stable system state and make guarantees about
system behavior. Relevant models include thermal circuit
simulators [42], time-based temperature predictors [43] [44]
or workload-based temperature prediction [37]. Well-defined
hardware configurations and operating ranges lend themselves
to efficient and stable control-theoretic solutions for cooling
decisions [45], [46]. While these strategies leverage the trade-
offs between cooling power consumption and core speed, they
neglect the relationship between cooling and data performance.
Thus, they may yield subpar performance for data-intensive
workloads.

In comparison to solutions in the current state of the art,
our contributions are three-fold:

• We quantify fan-disk interactions that cause difficult-to-
diagnose performance degradation in data-intensive work-
loads. Our measurements of a real operating datacenter
and lab reproductions show up to a 88% hit on disk write
throughput when fans are at their maximum setting.

• We develop a model of a server to represent dependencies
between server performance and physical effects, includ-
ing power, thermal and cooling. Using analytical models
as opposed to conventional simulators, we enable formal
optimization of the overall system.

• We use convex optimization to design a proactive policy
for optimally efficient fan management. Compared to
existing controllers and those proposed in literature, our
model-predictive control yields provably higher energy
savings (up to 80%) and faster workload completion times
(up to 70%) while meeting temperature constraints.

The rest of this document is organized as follows: Section
III documents our measurements of cooling and performance
interactions in a real, operating datacenter server. In Section
IV, we develop a system model based on physical mea-
surements of thermal, cooling and disk performance. Section
V formulates and solves the hardware thermal management
problem optimally for runtime energy. Finally in Section VI,
we evaluate how the optimal hardware management policy
performs as compared to current state of the art.

III. COOLING AND PERFORMANCE INTERACTIONS

We present a methodology for characterizing any server
disk’s response to vibrations that it may encounter in a
typical datacenter. Our parametric characterization suite of
experiments measures the vibrational sensitivity of a diverse
set of disks. In all experiments, the ambient temperature is
tightly controlled, isolating any drive performance effects to
mechanical sources.

TABLE I
TEST SERVER SPECIFICATIONS

Processor 8 cores @ 3.0GHz, 40nm
Memory 16 x 16GB DIMM
Operating system Solaris 11.1, firmware 8.2.1
DBMS Oracle 11.2.0.3

Idle processor power 75W
Idle server power 267W
Typical server power range 330-600W
Maximum air flow 145 cubic feet per minute (cfm)
Maximum fan power 180W

Room temperature 25◦C
Chassis internal temperature 30◦C

A. Measurement methodology

We recorded vibrations from several points on server racks
in an operative datacenter, using tri-axial accelerometers.
These vibrations can be quantified on two different axes -
the overall acceleration or total energy, called the amplitude,
and the frequency or component frequencies of the signal.
The amplitude is a scalar calculated from the power spectral
density (PSD) function, or the root mean square value of
multiple signals, in units of grms. The frequencies are in
Hertz. We found that a rack server in an operative datacenter
typically experiences vibrational frequencies ranging from 20
to 2000Hz, and amplitudes from 0 to 2 grms.

Fig. 1. Server organization with (1) hard disks and (2) fan assembly directing
airflow towards (3) the motherboard.

Within the measured parameters, the vibrations are repro-
duced in a lab environment with an Unholtz-Dickie model
K170 electrodynamic programmable vibrational table [47].
Table I lists detailed specifications of the platform and envi-
ronment. The test server is mounted on top of the shake table,
as we monitor the same points where it would have come in
contact with a rack mount to ensure that the vibrations are
faithfully transmitted. The test server has a commonly used
single-socket, multi-core and multi-threaded processor, two
memory sockets on either side of the processor, 6 fan modules,
and 8 disk drive slots. It is loaded with a broad range of disk
models as described in Table II, including commodity SATA
drives, enterprise SAS drives, and solid state drives (SSDs).
Since SSDs do not depend on moving parts to read data,
they are impervious to vibrations. These control results are
omitted for clarity. Fan speeds are controlled through pulse
width modulation (PWM). This electrical “pulse” does not
contribute to mechanical vibrations. The available fan speeds
are 0-100% at increments of 10% (given some tachometer
error) but in practice, fans are observed to be at least 50%
when a server is active. We can temporarily override the built-
in fan control algorithm to manually set fan speeds via the
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TABLE II
DISK DRIVE MODELS SPECIFICATIONS AND CHARACTERIZATION

Model Type Spin speed (RPM)
(specification)

Max write speed (MB/s)
(measured)

Write speed at max fan
(measured) Abbreviation

Fujitsu MHY2200BS SATA 5400 31.2 6.2 FUJSATA
Hitachi Travelstar E5K500 SATA 5400 37.0 14.6 HITSATA
Seagate Savvio 10K.3 ST930003S SAS 10000 72.2 72.2 SEASAS A,B
Hitachi Ultrastar C10K600 SAS 10000 81.6 81.6 HITSAS
Intel 710 SSDSA2BZ300G3 SSD - 206.8 206.4 -

Intelligent Platform Management Interface (IPMI). To expose
the true disk behavior, we disable the buffer cache that would
have hidden disk access latency from the user. We run a pure
I/O generator which issues random sustained writes to the
disk, utilizing 100% of the I/O bus bandwidth. We quantify
the effect of fan speeds on disk performance in terms of data
write throughput. The top write speeds measured while the
server is experiencing no external vibrations are reported in
Table II. In a latter Section VI, we evaluate realistic database
benchmarks with more variable I/O bandwidth requirements.

B. Amplitude test with random frequencies

We study the effect of external vibrations varying in ampli-
tude, defined as the total combined signal strength of each
component signal in the frequency profile. Vibrations are
generated on the shake table while fan speeds are fixed at
50% PWM, and accelerometers are placed at rack-contact
points on the server to report the total amplitude of vibrations
delivered.We ran experiments with profiles that cover two
different collections of frequencies. Figure 2 shows the effect
of increasing vibration strength of frequencies ranging 20-
800Hz, while Figure 3 shows the same for frequencies 20-
2000Hz. Although lower throughputs follow higher ampli-
tudes, the shape of the curve varies across hard drives and
across frequency profiles. Of the two SATA drives spinning
at the same speed (5400 RPM), FUJSATA performs better
than HITSATA for grms < 0.2. At grms = 0.63, HITSATA
writes at 8.6 MB/s in the first profile but 3 MB/s in the second.
SAS drives are more resilient, showing signs of performance
degradation at grms = 1.27. The largest drop among the SAS
drives is 10.5% on HITSAS and the largest drop among the
SATA drives when HITSATA stalls at 0 MB/s at grms = 1.8.

C. Frequency test with fixed amplitude

This experiment characterizes the hard disk response to
external vibrations of varying frequencies. From on-site mea-
surements at datacenters and observing Figures 2 and 3,
we fixed the amplitude of vibrations at 0.17g, where drives
experienced minor throughput degradation. Figure 4 shows
the sweep through frequencies between 20 to 2000Hz and
resulting disk throughput changes. Certain frequencies that
cause performance degradation have a very narrow band. Even
though more obvious degradation is seen at higher frequencies,
there are narrow bands where disk performance returns close
to its ideal. SATA drive throughput drops to 0MB/s at various
points, while SAS drives fluctuate by 1-2%.
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Fig. 2. Measured throughput dependence on vibrational amplitude, component
frequencies ranging 20-800Hz
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Fig. 3. Measured throughput dependence on vibrational amplitude, component
frequencies ranging 20-2000Hz

D. Fan sweep test

Here, we isolate the effect of internal vibrations generated
by the full range of possible fan speeds by bolting the server
to the stationary shake table. With each change in stimuli,
the disk drive throughputs take 20 seconds to respond. In our
experience, the processor shuts down within 10 seconds of
turning off the fans, while self-reporting on-die temperatures
up to 91◦C immediately before crashing. Consequently, it is
challenging to accurately measure system characteristics in
fine-grained steps at low fan speeds. We step through fan
speeds from 100% to 0% PWM at 10% step sizes to obtain
stable results. Figure 5 shows the average degradation of
write throughput on fan speeds, normalized to the maximum
throughput measured on each disk. There are no observable
vibrational effects below 50% PWM. SATA drives show the
most throughput degradation, down to 35% and 12% of their
maximum value. The SAS drives are only affected by the
highest fan setting - HITSAS loses 2% of its throughput.

With these experiments, we have characterized the relation-
ship between hard disk performance and vibrations they expe-
rience. The possible effects of vibrations external to the server
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Fig. 4. Measured throughput dependence on vibrational frequency with
amplitude fixed at 0.17g
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Fig. 5. Measured throughput dependence on fan speeds (no external vibra-
tions)

(represented by the amplitude and frequency sweep tests) are
not easily mitigated - short of expensive hardware rehaul.
Although the mechanical study of these drive differences is
out of the scope of this paper, we do observe that enterprise
SAS drives are consistently more resilient than commodity
SATA drives. Enterprise drives tend to have a heavier and
more stable chassis, more expensive servos controlling the
read/write head, better spindle motor shaft capturing, and
better air flow control, all of which improve resilience against
environmental vibrations [3]. Since our motivation is to find
solutions for in-server hardware management, and the majority
of deployed drives in cost-sensitive datacenters are commodity
SATA, we choose to focus on the relationship between internal
fans and SATA disk performance. Based on measurements
presented here, this leaves a 65-88% drive performance gap
that we hope to close with intelligent fan control policies.

IV. PERFORMANCE, THERMAL, & ENERGY MODELS

In this section, we model major physical and software
interdependencies in the system, which will enable the optimal
hardware manager in Section V. These models are derived
from real measurements of the processor, hard drive, power
and thermal sensors, fan cooling subsystems, and mechanical
environment while running database workloads on the server
described in Table I. Well-known power and thermal models
are calibrated based on temperature and power measurements
of our machine. We use measurements of disk performance
from the previous section to model the effect each cooling de-
cision has on IO throughput and system performance. All these
components are combined to represent the behavior of a high-
end server running typical database workloads. For example,
disk performance impacts database application performance,

which drives to CPU utilization, which dissipates some amount
of dynamic power, which finally affects chip temperature. The
temperature drives fan cooling response, which may generate
vibrations which degrade disk performance. We model each
of these interactions serially, to avoid double-counting the
indirect effects of interconnected factors.

A. Workload representation

We chose the TPC-H benchmark suite to represent data-
intensive workloads that commonly run in datacenters [15].
TPC-H is a decision-support benchmark consisting of 22
queries representing different business-oriented queries on
large datasets. Depending on the size of the dataset, the entire
suite can take on the order of hours or days to complete. The
benchmark specification states that performance is defined by
the query throughput (i.e. query-per-hour) for a fixed dataset,
processor parallelism and memory size. For each individual
query of a 40GB database size, with 4 parallel core threads
allowed, and 128GB RAM, we calculate performance as the
execution time required. We extract the model for each query
using the single-user “power test” scenario, as opposed to the
“throughput test” which represents a multi-user environment.

Other researchers have had success categorizing database
workloads solely on their observed disk activity fluctuations,
without tracking the semantics at an application level [19],
[20]. Since different database operations in a single query can
activate parallel cores, memory, and the IO bus in different
patterns, we extend the model to represent a more comprehen-
sive view of the system operating constraints, using a database
manager that enables parallel queries where appropriate. We
monitored the system using built-in trace commands (mpstat,
iostat, vmstat) and a database monitor Oracle Enterprise Man-
ager. Resource utilization can be described by vectors in a
multi-core scenario in the form < c0, ..., cN−1, io > where ci
represents the utilization between 0-100% for physical core i
out of N cores, and io represents the percentage of maximum
IO bandwidth (machine specification is 300MB/s).

We observe similarities among the observed utilization
points and we model these similarities as system states. We
use k-means clustering to quantify these similarities, where
each cluster corresponds to a distinct system state. When
determining a cluster for each observation, distortion is defined
as the sum of the squared distances between each observation
vector and its closest centroid [48]. The distortion decreases
non-uniformly as the number of clusters increases. The elbow
test described in [49] determines an appropriate number of
clusters (k) to determine the point that gives the most benefit
(in terms of reducing distortion) relative to an increase in
clusters. Consider the decreased distortion per increment in
k as the quantifiable benefit of increasing k. Then the first
derivative represents the rate of gain in benefit. Furthermore,
to find the k setting that yields a highest gain in benefit vs.
increase in k (and consequently, lower benefit for k + 1) we
can take the derivative of the rate of gain. Thus, identifying
the minimum in the second derivative shows us an appropriate
k using the “elbow” test. The statistics used can be collected
at runtime to update the model after initial deployment, to
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Fig. 6. Measured CPU utilization (c1-c8) and IO bandwidth (io) statistics
serve as vector input into the k-means clustering algorithm. Each cluster then
represents a distinct hardware state.

Fig. 7. Model representation of query 2, with a chain of 6 states

ensure that the workload clusters defined represent the range
of resource utilization accurately.

With this method, we find that four clusters (Figure 6)
provide a good tradeoff between number of clusters vs. distor-
tion value. With all execution grouped into one of these four
clusters, on average each query can be described with a chain
of 97 states. Figure 7 illustrates how the shortest query 2 is
represented by a chain of 6 states. At the high level, most of the
TPC-H queries consist of reading data from separate tables in
parallel before sorting and/or joining them. Parallel operations
show multiple cores being active - e.g. State 2 may be issuing
multiple small read requests, while State 4 is issuing large
bulk transfers. The joining and aggregation of parallel work
present as one particular core being very active and others
being relatively idle (e.g. State 1 and State 3).

The average length of time spent in each state per oc-
currence varies between states, though all are on the order
of seconds. The performance traces were collected while the
server was in a cool room, so the processor stayed cool
and fans were running at low speed. This measured time
is considered the “ideal” time since there are no vibration-
induced delays. The duration of a state may be extended
dynamically if the state is IO-dependent and fan speeds are
high - as measurements show in the previous section.

In the rest of this work, we consider each query as a series
of intervals, where each interval executes a single workload
state. For example, the shortest query 2 is represented with
6 states of various lengths, while the longest query 1 has
330 state changes. The average query length across all 22
queries is 120 states where the standard deviation is 88 states.
For each single workload state, since the hardware utilization
patterns are constant, their power and thermal responses can be
estimated. They are evaluated on an interval-by-interval basis
to determine the necessary changes in cooling control.

B. Power model

In most server systems, including ours, the processor and
the cooling system represent the majority of total server power
consumption and have a wide dynamic range [50] [51]. The
processor’s high power density dominates dynamic changes
in chip temperature at runtime. Processor power dissipation is
further comprised of dynamic power - dependent on utilization
state w - and static “leakage” power - dependent on chip tem-
perature T . Thus power consumption εpower is summarized
as:

εpower(w, T, f) =εdynamic(w) + εstatic(T ) + εfan(f) (1)

Our processor’s maximum power dissipation by design
(the “thermal design power”) is 240W; we observe a typical
range of 80-200W consumed by the processor, depending
on utilization. We estimate the dynamic power dissipation
of each workload state by linearly scaling the power range
by the utilization factor [52]. Since the utilization level for
each state is fixed as per the workload model, the dynamic
power consumption is εdynamic(wi). For the typical range
of operating temperatures in a server and time periods on
the order of seconds, a linear model for static power has
been shown to have an error less than 5% [53]. Thus, we
approximate the static power εstatic(T ) as linearly dependent
on temperature for a short workload interval. We use a cubic
fan power model [6], calibrated by a reference constant rf ,
based on a known fan speed fr and its corresponding power
consumption level pr. Our fan power model is defined as:
εfan(f) = rff

3, where rf = pr
(fr)3 .

The fan speeds are reevaluted once per workload interval,
on the order of several seconds. Thus, each interval power
depends on the single workload state, the starting temperature,
and the fan speed.

C. Thermal model

The major heat producing and extracting components in
our server can be represented with electrical analogies [42]
[45]. Components that consume power (such as the processing
cores and caches) behave as heat sources, and are modeled as
power sources in the circuit. The heat sink’s heat dissipation
is represented by convective resistance, which changes dur-
ing runtime according to airflow volume. This air flow rate
increases linearly with fan speeds [6].

We extract an analytical model based on initial RC sim-
ulations run on the widely accepted HotSpot tool [42]. The
goal is to identify a differentiable model for a formal problem
formulation in Section V. We simplify the model to focus
only on runtime variations of the hottest core and the fan
cooling capacity. The hardware has a thermal response time
constant τ that is dependent on fan speed. Each workload has
a time-invariant steady state temperature Tss if it is allowed to
run indefinitely at a fixed fan speed. Thus, beginning at some
initial temperature T0, for any single workload executing for
a certain amount of time t, a cooling-dependent time constant
τ dictates how quickly the system approaches the steady state
temperature Tss. The heat sink temperature falls linearly with
the convective resistance - thus, temperature Ti decays as
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Fig. 8. Fan speed-disk throughput interaction fit to a sigmoid function

an exponential function of the given fan speed fi. Recall
that the actual length of each interval t varies depending on
which workload state is executing, since we take into account
both the nominal interval length of that particular state and
any delay that the fan may incur. Equation 2 describes the
instantaneous temperature at the end of interval i (i.e. the start
of i+ 1) as:

Ti+1 = Tie
−t
τ + Tss(1− e

−t
τ ) (2)

The initial temperature of any given interval i is a historical
(fixed) value Ti−1 from the perspective of that interval. The
final temperature of that interval Ti is calculated according to
the initial temperature, the dynamic power dissipated by the
current workload state, leakage power dissipation due to the
starting temperature, and the cooling capacity of some chosen
fan speed. This becomes the initial temperature of the next
interval i+ 1.

We compared 18 seconds of time series temperature data
from our analytical model and a full HotSpot simulation.
Across the range of our expected workloads, the average error
is less than 1%; thus we can approximate HotSpot’s accepted
model quite closely, with simulation time on the order of
minutes instead of hours.

D. Cooling-vs-disk interaction model

In typical enterprise servers, vibrations are transmitted from
the fan motors by mechanical coupling to the housing for
the disk drives. In earlier work, an empirical curve was used
in [41] without making assumptions about the exact relation
between fan speeds and vibrational amplitudes. Equation 3
formalizes the relationship as a sigmoid function of fan speed
f , also visualized in Figure 8. We model the Fujitsu SATA
drives in our particular server with α = 1034.65, β = 1033.65,
γ = 8.04, for an R2 value of 0.98 and average relative error
of 2.7%. The optimal solution (Section V) depends heavily on
the exact relation between a particular disk and the server’s
cooling system - the cost of inaccurate modeling for a particu-
lar device are discussed and quantified in Section VI-C. In an
enterprise scenario, many of the same hardware models would
be deployed at once, which should alleviate the initial cost of
accurately characterizing this disk performance dependency.

ThroughputFactor(f) =
α

β + eγ·f
(3)

The workload model already contains information about the
ideal runtime c(w) of each workload state w, assuming full

availability of the disk bandwidth (Section IV-A). It has been
shown that throughput degradation has a superlinear effect
that cascades into the overall application delay [12] [13].
In lieu of modeling memory hierarchy and database storage
structures in detail, we assume that the final delay caused
by fan degradation is at least inversely proportional to the
throughput. The resulting execution time εtime(w, f) needed
for executing a single instance of a workload state at a certain
fan speed is then defined as:

εtime(w, f) = c(w) · β + eγ·f

α
(4)

V. OPTIMAL COOLING CONTROL

We consider a formal constrained optimization problem
to define fan speeds that minimize the total cost of system
operation. Each database workload is represented as a chain
of workload states, where a workload state wi identifies the
system resource vector during some execution interval i. Each
interval has a cost of execution, εcost, and the total cost CN
of executing N intervals is the sum of each interval cost.
We minimize the cost while keeping the temperature of all
components under the threshold Tlimit at all times:

min
f

[CN (f)] s.t. Ti ≤ Tlimit∀i ∈ [0, N ] (5)

To minimize the energy cost of execution, Equation 5 would
be rewritten with CN = EN , where the energy consumption
EN is an accumulation of power consumption values εpower
scaled by the interval lengths of εtime.

EN =
N∑
i=1

εpower(wi, Ti−1, fi) · εtime(wi, fi) (6)

Slater’s condition states that any feasible solution to the
Lagrangian Dual problem is also an optimal solution for a
convex objective function [54]. Since the constraint function
is the temperature, it suffices to analyze the various power
components along with the time degradation dependency for
convexity.

Lemma V.1. Processor and fan power consumption power
are convex with respect to fan speed.

Proof. Power consumption consists of three components: 1)
processor dynamic power, a linear function of processor
utilization; 2) processor static power, a linear function of
temperature; and 3) fan power, a cubic polynomial with respect
to fan speed. Processor dynamic power is only a function
of utilization, thus unaffected by the fan speed selection:
∂nεdynamic

∂fn = 0,∀n. Processor static power has a linear
relation with temperature, thus the convexity of static power is
the same as of temperature. Consider the temperature function
in Equation (2). The steady state temperature (Tss) and time
constants (τ ) are empirical values obtained from physical char-
acterization, so we prove the convexity of temperature through
numeric differentiation in Figure 9. The second derivative is
non-negative for all fan speeds, so temperature as a function
of fan speed is convex. The power consumption of the fan is
a cubic polynomial with positive first and second derivatives:
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Fig. 9. Numerical function of temperature with respect to fan speeds

∂2εfan(fi)

∂f2
i

= 6rffi > 0. Thus all power functions are convex
with respect to fan speeds.

Lemma V.2. Execution delay is convex with respect to fan
speed.

Proof. Total execution time of any given interval is a function
of the workload being executed, which has a minimum delay
(c(w)), and the fan speed, which may further slow down the
workload. The delay function (Equation 4) is an exponential,
and its second derivative is: ∂2εtime(w,fi)

∂f2
i

= c(w)γ2

α eγfi > 0.
Since α, β, and gamma are all positive constants, the second
derivative is always positive, hence the delay function is
convex with respect to fan speeds.

Theorem V.3. Total energy cost of any application executed
on this hardware platform is convex with respect to fan speeds.

Proof. Energy consumption is defined as the product of power
consumption and the total time that power is dissipated across.
The first derivative of the energy cost function is always
positive, such that energy monotonically increases with fan
speeds. The final convexity of energy is calculated as: ∂

2Ei
∂f2
i

=
∂2εpower(fi)

∂f2
i

+ ∂2εtime(fi)
∂f2
i

+ 2
∂εpower(fi)

∂fi

∂εtime(fi)
∂fi

Moreover,
since we find that the second derivative of the energy cost
function with respect to fan speeds is always positive, the
problem is convex.

A. Convex optimal formulation

We minimize the cost CN while ensuring that the system
remains strictly below the temperature constraints (Tlimit) for
all time intervals. The Lagrangian with KKT multipliers is
formulated as such, where each λi represents the constraint at
interval i:

L = CN +
N∑
i=1

(Ti − Tlimit)λi (7)

We need to solve for the fan assignment f at every interval
j such that the Lagrangian is minimized.

∂L
∂fj

=
∂

∂fj
(CN +

N∑
i=1

(Ti − Tlimit)λi) = 0,∀j ∈ [1, N ] (8)

The total cost CN is a summation of all interval costs, and
is dependent on all fan speeds. We assume that each interval’s
fan mainly affects its own interval cost, and less so intervals
before or after it. This means dropping the derivative of the

static power term (εstatic), since it is the only term that carries
the hysteresis in terms of fan-dependent temperature. That is,
the dominant dependency of total cost CN on fj is the the
cost of that interval εcost(wj , Tj , fj). Thus, ∂CN∂fj

simplifies to
∂εcost j
∂fj

. Additionally, since temperatures in the past are not
dependent on current or future fan settings, the summation
begins at the relevant interval j instead of 1.

Based on the temperature model in Equation 2, the deriva-
tive of the change in temperature ∆T converges to ∂∆T

∂f =

∂Tss(1−e
−t
τ )

∂f . For consecutive intervals j and j + 1, we
divide the Lagrangian minimizations by ∂∆Tj

∂fj
and ∂∆Tj+1

∂fj+1

respectively, then take the difference. Since temperatures must
stay strictly within constraints, the KKT multiplier λj must be
equal to 0. The expanded summations simplify to this equality:

∂εcostj
∂fj
∂∆Tj
∂fj

−
∂εcostj+1

∂fj+1

∂∆Tj+1

∂fj+1

= 0 (9)

Intuitively, this specifies that the ratio between execution
cost and the thermal pressure should be held constant across
intervals. This simplifies the Lagrangian problem into finding
a fan setting where this ratio can be kept constant throughout
runtime.

B. Optimal algorithm design

We use energy as an example of an optimization objective in
the rest of this paper. The proposed algorithm 1) searches for
a convex optimization of energy costs, 2) while guaranteeing
that temperature constraints are met, 3) for a set of known
queries on a known system. Such a solution may not exist,
hence necessitating a search. Figure 10 shows the logic flow
of iterating over each query to solve for a vector of optimal fan
speeds for a given workload and initial temperature. A more
detailed pseudocode for the interior point search for a solution
is described in Algorithm 1. In each workload interval, the
controller takes the current workload state and a target ratio
as inputs, and solves the combined system model to output
the closest permissible fan speed that produces a matching
ratio, to fulfill Equation 9. In lieu of physical sensors, we use
Equations 1 and 2 to represent power and thermal interactions.
Equation 4 dictates the effect a fan setting has on the execution
time of each interval.

To begin, we start the query at the lowest possible fan
speed (line 1). This first interval drives a target ratio for all
following intervals (lines 2-5). According to Equation 9, this
is a potential value of the initial ratio, ratio0, that should
be matched for the rest of execution in order to achieve the
minimal cost of execution, or minimal energy in our case.
The rest of the simulation (power dissipation and temperature
simulation) follows this decision. For all following intervals,
there are fixed costs that are independent of the fan decision,
including dynamic power dissipation and static power dissi-
pation (lines 7-8), after which the solver attempts to set a fan
speed that matches ratio0 as closely as possible (line 9). After
making the interval decision, the solver completes timing and
thermal modeling (lines 11-12).
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Fig. 10. Control flowchart of search algorithm for a known query.

Due to physical limitations of the fan speed and a possibility
of overloading the processing workload, there may not be
any feasible fan speeds that satisfy ratio0 without violating
temperature constraints. If the constraints are met at the end
of a query run (line 17), the corresponding lowest-cost fan
assignment is returned as an optimal solution. If one of the
constraints is violated, the workload chain is re-evaluated,
starting with the next lowest possible fan speed (loop to line
1). If all fan speed have been exhausted and there is still no
solution that meets all constraints, that means the the problem
is infeasible, and the only resort is to slow down the CPU
workload with DVFS.

Since the total cost always increases with fan speeds, the
algorithm is described linearly here for clarity, but can be sped
up by doing a binary search. Pragmatically, the number of
system states and quantized fan speeds are both limited (e.g.
only 10 fan settings in our actual server); these values can be
pre-computed and stored in a lookup table for execution at
runtime.

VI. RESULTS

In this section, we demonstrate the effectiveness of our
proposed solution by comparing against the state of the art
and other proposed solutions in literature. We describe the
hardware and software setup of our physical measurements
on the real server, as well as the parameters of our modeling
and simulation. We describe three state of the art fan control
strategies and compare with our results. Finally, we discuss the
robustness of our modeling and optimal solver, analyzing how
optimization results might change at various levels of model
inaccuracies.

A. Experimental Setup

We model the same server instrumented and measured in
Section III, a SPARC T4-1 server with 8 cores running at
2.85GHz, with 8 DIMM modules of 16GB each. We use
commodity SATA disks as they are preferred by cost-sensitive
datacenters for their low cost per storage density. Buffer caches
are enabled to capture the real response of applications along
with power, thermal, cooling and disk performance issues.

Algorithm 1 Search for energy-optimal fan speeds
1: for f0 = each increasing fan setting do
2: for the first interval do
3: ratio0 ⇐ given f0, find ∂εenergy/∂∆T
4: ti ⇐ given {workload, t0, f0}, find temperature
5: end for
6: for each following interval i: do
7: dynamicPower ⇐ fixed for the workload
8: staticPower ⇐ fixed for ti
9: fi ⇐ find fan to match ratio0

10: fanPower ⇐ calculate fan power
11: intervalT ime⇐ find fan-induced delay
12: ti+1 ⇐ advance temperature
13: if ti+1 violates constraints then
14: continue to next f0

15: end if
16: end for
17: if workload completes within constraints then
18: minimum cost fan assignment found!
19: return solution f̄
20: end if
21: end for

We evaluate the management policies with a mixed work-
load of database queries and compute-intensive batch jobs
as per typical datacenter environments. TPC-H is a decision
support benchmark representing databases requests [15]. The
queries combine operations such as sequential scan, index
scan, merge join, and hashing functions. The thermal threshold
is set to 85◦C. SPEC CPU 2006 is a benchmark suite tar-
geted towards compute-intensive workloads [55]. We assume
there are four co-located compute tasks on the processor,
represented in our power and thermal simulations as single-
threaded tasks that consume 8W each - this number was
obtained from averaging the power consumption of SPEC
CPU 2006 benchmarks. With this mixed workload on our
physical system, we encounter both thermal issues due to
heavy computation, and I/O performance issues due to reliance
on the disk access rates.

Figure 11 summarizes the flow of data from physical
measurement to simulation. We monitor sensor statistics and
event logs on a real server through IPMI [56]. Most enterprise
servers have a side-band controller implementing IPMI to
handle server management, reading hardware sensors, and
enforcing power modes. Disk access statistics are collected
through iostat reports, estimating the number and average
service times of queued and active transactions per sampling
interval (every second). These event logs are converted into
a discrete workload model as described in Section IV. The
advancement of workoad states varies, measured at a gran-
ularity of 10ms. Since the packaging thermal time constant
is at the order of seconds, the fan control interval is set to
1s. In practice, the side-band controller executes the fan con-
trol algorithm. Unfortunately, we were unable to implement
custom control policies on the machine due to permission
restrictions on user programmability. Thus, we use MATLAB
to compare multiple algorithms by replaying and manipulating
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Fig. 11. Subsystem models are based on real physical measurements. We use MATLAB to coordinate the models and optimize the system.

our physical experimental traces and analytical models.
We compare our proposed controller against three others

in terms of delay and energy cost when running mixed SPEC
and TPCH workloads. They represent a range of sophistication
and complexity in hardware management schemes. The first
(PID [36]) is time-tested strategy used in many control systems
in various engineering fields, representing the state of the art.
The next two strategies (Adaptive PID [37] and JETC [44])
were proposed in literature; they make cooling decisions
by accounting for temperature conditions as well as CPU
performance degradation. If any controller fails to maintain
chip temperatures under the specified threshold (85◦C in
our system), the hardware enters an emergency state, where
chip hardware enforces progressive power gating to throttle
performance and reduce power dissipation relative to the
magnitude of temperature violation. Individual policy details
are described below:

Proportional-Integral-Derivative (PID) [36] is completely
agnostic to workload and reacts only to temperature sensor
feedback. Being a reactive method, it responds much slower
to temperature fluctuations than proactive controllers, and by
nature allows both over- and under-corrections before arriving
at a steady solution. We show results for “PID-1” which is
the same strategy with a setpoint conservatively set below
the threshold (by 1◦C in our case) to reduce temperature
violations. The tuning parameters for both PID and PID-1
are determined using the Ziegler-Nichols closed loop tuning
method [57]. The control interval is set to 10 seconds.

Adaptive PID [37] refines the PID assignment into two
zones and scales the tuning parameters dynamically based on
the current fan region. It uses the Ziegler-Nichols closed-loop
tuning method [57] to obtain PID parameters specific to a high
and low fan setting (15% and 65% of the maximum, in our
experiments). For all fan speeds between those two settings,
the paramters are linearly interpolated for faster convergence.
The original proposal for APID stated a control interval of
30s, aiming to converge the fan control within hundreds of
seconds. In our experience, a maximum control interval of
10s is required to maintain steady chip temperatures.

Joint Energy, Temperature and Cooling Manager
(JETC) [44] uses proactive core migration to control heat
generation. In each control interval, this policy predicts the
upcoming power dissipation and resulting temperatures. Us-

ing It then uses an RC thermal model proposed in [42] to
calculate the required increase or decrease in cooling capacity
to bring temperatures to the system thermal setpoint. As in
the source paper, JETC re-evalutes control decisions every
second, predicts temperatures at a 9 second horizon. While
making these decisions, the fan controller aims to minimize
fan setting changes during runtime.

Our Energy-Optimal controller implements the search de-
scribed in Algorithm 1, minimizing for total energy consump-
tion. The search is executed offline, then applied to a known
query at runtime. For each workload state in a query, it sets the
fan to maintain a constant ratio between the change in energy
and the change in temperatures. Unlike other policies, control
decisions are made when the workload state changes instead
of a fixed control interval. In practice, the control interval is
on the order of seconds.

B. Controller policy results comparison

The energy and delay results from a select number of
TPC-H queries are shown in Figure 12. By design, the
energy-optimal solver yields fan settings that yield the lowest
possible server energy consumption required to complete
a workload. Our energy savings come predominantly from
faster completion times and lower overall fan speeds. This
controller operates as close to the temperature threshold as
possible without crossing it, unlike the oscillatory nature of
PID solutions [36]. Our policy guarantees zero temperature
violations with lowest energy consumption possible. Only
the PID-1 controller is able to keep temperatures below the
threshold, at a much higher cost in terms of delay and energy
since it sets an artificially lower thermal setpoint. The slow
convergence of APID leads the policy to violate temperature
constraints. On average across queries, our policy is 2x faster
than these heuristic solutions, while consuming 65% less
energy. JETC relies on a detailed thermal simulation of the
processor package. At each decision interval, it predicts the
upcoming temperatures and power dissipation, then calculates
the heat sink cooling capacity needed for such a power
density to maintain temperatures under specified constraints.
For a slowly-varying workload, this yields stable temperatures
and converges to a solution much faster than the PID-based
controls. However, because JETC relies on migration-based
management, its actually results in unstable temperatures for
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Fig. 12. Final simulation results of cooling policies on TPC-H queries. The selected queries represent various lengths and operations across the suite.

TABLE III
FAN CONTROL BEHAVIOR AVERAGED ACROSS SELECT QUERIES

Algorithm Name PID
[36]

APID
[37]

JETC
[44] Optimal

Average fan speed
(% of max) 77 58 63 57

Std dev of fans (%) 10.2 12.8 6.6 20.1

Time in emergency (%) 28.6 32.1 12.1 0

Avg. temperature (◦C) 84.9 74.1 84.2 84.9

Peak temperature (◦C) 91.5 91.2 85.5 85.0

our workloads (this effect was also noted in [37]). To com-
pensate for these unstable temperatures, this control requires
higher fan speeds on average. Compared to JETC, our optimal
policy is 1.5 faster on average, using 19% less energy.

Table III summarizes controller behavior in terms of fan
speeds and resulting temperatures over all tested queries. By
design, the optimal controller never exceeds the temperature
threshold, while the PID-based solutions naturally overshoot
the temperature setpoint regularly. JETC also makes incre-
mental steps towards the steady state fan speed, with possible
temperature violations while in progress. Such temperature
violations incur throttling delays due to hardware-enforced
power gating (listed as “Time in emergency” in the table),
while the total server energy consumption continues to rise.
Meanwhile, the optimal solution finds the minimal fan speeds
to keep temperatures within limits immediately without need
for oscillation like the PID-based solutions, resulting in a
single change in fan settings following each workload state
change. Our setup (25◦C ambient and 30◦C server internal)
already pushes the limits of operating range recommended by
the vendor for running high-performance mixed workloads.
Additional thermal pressure from the ambient environment can
be simulated via the steady state temperature (Tss) of each
workload state. At 5◦C hotter, there is no feasible solution that
exists without resorting to some time in emergency mode. At
5◦C cooler, our policy still delivers the best energy results, but
the magnitude of benefit over the most energy-expensive PID
controller drops from 65% to 36%.

C. Sensitivity to model inaccuracy

Our optimal solver relies on several models to represent
physical subsystems in the server. Although we were unable
to implement and evaluate the accuracy of our final algorithm
in a real machine, we present some studies to evaluate the
effectiveness of the convex optimal formulation when compo-
nent models may be inaccurate.

1) Power model accuracy: Errors in the power model are
described with additive Gaussian white noise in Equation
1 used by the solver at each interval. The signal-to-noise
ratio (SNR) is shown in decibels (dB), where a higher SNR
represents a “clearer” original signal relative to the noise.
Figure 13 shows that a noisy power model results in sub-
optimal results and higher energy cost, though the optimal
policy still outperforms the next-best JETC policy for most
queries. An SNR of 20dB indicates that original signal is 100
times more powerful than the noise. Due to noise added to the
power model, the optimal policy consumes on average 6.3%
more energy as compared to the optimal policy that uses power
model with no noise added. JETC consumes 8.5% more energy
when noise is added to the power model as compared to no
noise. Heuristic PID and APID policies are not sensitive to the
noise in the power model, as they respond only to temperature
readings, so their results remain the same regardless of the
model. Thus, optimal policys benefit relative to PID and APID
policies is reduced on average from 65% to 63% with power
model of 20dB SNR as compared to when model with no
noise is used.

2) Thermal model accuracy: We investigate the effects of
error in the temperature model (Tss in Equation 2). We again
use additive Gaussian white noise to estimate errors in the
thermal model. Figure 14 shows that due to a 20dB SNR in
the temperature model (i.e. noise is 1% of the original signal),
the optimal policy consumes 6% more energy as compared to
when there is no noise in the model. It still outperforms PID
by 63%. JETC has a much higher penalty due to noise in the
thermal model - its energy cost increases by 95%, consuming
2x as much energy as the optimal policy at the same noise
level. We conclude that while both the optimal policy and
JETC depend strongly on a temperature model to achieve their
objectives, the optimal policy is more robust to reasonable
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Fig. 13. Optimal solver efficacy under inaccurate power modeling
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Fig. 14. Optimal solver efficacy under inaccurate temperature prediction

levels of added noise.
3) Disk delay model accuracy: A major motivation of this

work was to recognize that fan speeds have a detrimental
effect on disk peformance [12], [41]. The original delay
model we proposed in Equation 4 is exponential with respect
to fan speeds. Figure 15 illustrates two alternative models:
a simple piecewise linear function and a constant function,
representing the common assumption that fan speed does not
affect performance, as well as their first derivatives which
dominate the convex optimization solution in Equation 9. To
test these results, we substitute each of these alternative models
into the optimal solver calculation, and simulate the final
results for a system that still responds with an exponential disk
delay relative to fan speeds. Figure 16 shows that if the solver
tries to obtain an energy-optimal solution while assuming that
disk throughput is independent of fan speeds, it uses 31%
more time and 71% more energy to complete the workload
on average. A piecewise linear model has a delay penalty
of 4% compared to an accurate exponential model, using
12% more energy. Model-predictive controllers are meant to
rely on reasonably assumptions about the physical system.
Since JETC compensates for modeling errors through dynamic
reactions, it can perform better than our entirely model-
dependent algorithm in some cases. However, our formulation
with a simplistic model still outperforms other algorithms on
average, reducing system energy by 37% compared to PID.

D. Overhead and repeatability

Table IV compares different sources of overhead for each
policy. “Design effort” represents the offline time and effort
required to manually define or calibrate a controller before a
query can be managed during real execution. Iteratively tuning
a PID controller [36] takes many multiples of the machine’s
thermal time constant - minutes per iteration, and the Adaptive
PID controller has to be tuned twice [37]. In contrast, both
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Energy Consumption

1 5 9 12 15 16 17 18 avg

query number

0

1

2

3

4

5

6

7

e
n

e
rg

y
 (

k
W

h
)

PID

APID

JETC

Optimal:constant

Optimal:linear

Optimal:exponential

Fig. 16. Efficacy of the optimal solver with inaccurate delay models

JETC [44] and our strategy require up front modeling effort to
capture system physical characteristics. Our solver’s workload
trace clustering implemented in Python took less than 10
seconds over thousands of samples collected over 4.5 hours
of actual database execution. In addition, we perform a search
at design time for fan settings given starting temperatures and
a known workload. MATLAB solves the longest query in 3.7
minutes. “Decision delay” is the online delay to process inputs
and produce a decision at each control interval. Since we did
not implement the algorithms in a real machine, these numbers
are estimated from MATLAB execution times. For PID and
APID, the controller computes the derivative and integral of
historical errors, which contributes to the delay of over 7µs
for each decision, on top of their intrinsic reaction delays to
sensor stimuli. JETC simulates the processor floorplan in detail
to decide fan speed, which takes on average 4.14 µs. Our
runtime overhead costs (1.83 µs per decision) come only from
accessing hardware sensors and looking up the precomputed
solution. Our modeling methodology and fan control design
is meant to be repeatable across other server configurations.
The fan algorithm should always yield energy-optimal results
if these assumptions hold: (1) The workload is predictable
such that hardware utilization can be identified as distinct
phases in a sequence. Our a priori solution is not applicable
to workloads with very bursty or unpredictable hardware
patterns. (2) Measured relationship between fan speed and disk
delay is convex. While this has been observed in other cases
[12], it may not hold true for all server configurations. (3)
Server administration ensures that workloads are not grossly
oversubscribed. Most enterprise servers are expected to operate
far under 70% utilization on average, but if all cores are 100%
utilized and/or overclocked for a period, temperature violations
may be unavoidable. The technique may be modified with
loosened constraints in exchange for some time delays, in
order to settle for a near-optimal fan assignment.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2855122, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

TABLE IV
ESTIMATED OVERHEAD OF FAN CONTROL STRATEGIES

Algorithm PID [36] APID [37] JETC [44] Optimal

Requirements Tuning Tuning Modeling Modeling,
solution search

Design Effort Minutes Minutes Hours Days

Decision Delay (each) 7.81 µs 7.89 µs 4.14 µs 1.83 µs

VII. CONCLUSION

In this work, we present the very first optimal fan control
policy based on modeling a complex enterprise server plat-
form, including hardware and data performance interactions.
We identify a previously neglected link between the cooling
subsystem and application performance, where commodity
drive sensitivity to fans can cause up to 88% lower per-
formance in realistic cooling situations. This sensitivity can
further degrade the perforamnce of data-intensive workloads,
resulting in wasted energy consumption. We also develop and
integrate interdependent analytical models for performance,
power, thermal, cooling. Finally, we define a multi-model
objective function that can be solved to find optimally low-
cost fan speeds, saving 19-65% of CPU and fan energy while
guaranteeing that critical thermal constraints are still met
100% of the time. Where physical enclosure designs have
failed to completely solve the problem, our method can be
delivered via firmware updates to help the system relearn
hardware states according to new physical configurations and
upgrades (e.g. adding memory modules, upgrading storage
drives). It also allows for fast and low-cost deployment.
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